674 research outputs found
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Beauty photoproduction measured using decays into muons in dijet events in ep collisions at =318 GeV
The photoproduction of beauty quarks in events with two jets and a muon has
been measured with the ZEUS detector at HERA using an integrated luminosity of
110 pb. The fraction of jets containing b quarks was extracted from the
transverse momentum distribution of the muon relative to the closest jet.
Differential cross sections for beauty production as a function of the
transverse momentum and pseudorapidity of the muon, of the associated jet and
of , the fraction of the photon's momentum participating in
the hard process, are compared with MC models and QCD predictions made at
next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September
200
Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings
Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Observation of Bc+ →j /ψD (∗)K (∗) decays
A search for the decays B+c→J/ψD(*)0K+ and B+c→J/ψD(*)+K*0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3 fb−1. The decays B+c→J/ψ0K+ and B+c→J/ψD*0K+ are observed for the first time, while first evidence is reported for the B+c→JψD*+K*0 and B+c→J/ψD+K*0 decays. The branching fractions of these decays are determined relative to the B+c→J/ψπ+ decay. The B+c mass is measured, using the J/ψD0K+ final state, to be 6274.28±1.40(stat)±0.32(syst) MeV/c2. This is the most precise single measurement of the B+c mass to date
A study of the Z production cross-section in pp collisions at √s = 7 using tau final states
A measurement of the inclusive Z → ττ cross-section in pp collisions at
√s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.
An improved method to study NK-independent mechanisms of MTLn3 breast cancer lung metastasis
Toxicolog
An improved method to study NK-independent mechanisms of MTLn3 breast cancer lung metastasis
Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+
A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date
- …
