1,608 research outputs found

    Spin and valley quantum Hall ferromagnetism in graphene

    Full text link
    In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic' zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed

    Chordal Editing is Fixed-Parameter Tractable

    Get PDF
    Graph modification problems typically ask for a small set of operations that transforms a given graph to have a certain property. The most commonly considered operations include vertex deletion, edge deletion, and edge addition; for the same property, one can define significantly different versions by allowing different operations. We study a very general graph modification problem that allows all three types of operations: given a graph and integers k(1), k(2), and k(3), the CHORDAL EDITING problem asks whether G can be transformed into a chordal graph by at most k(1) vertex deletions, k(2) edge deletions, and k(3) edge additions. Clearly, this problem generalizes both CHORDAL DELETION and CHORDAL COMPLETION (also known as MINIMUM FILL-IN). Our main result is an algorithm for CHORDAL EDITING in time 2(O(klog k)). n(O(1)), where k:=k(1) + k(2) + k(3) and n is the number of vertices of G. Therefore, the problem is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm is both more efficient and conceptually simpler than the previously known algorithm for the special case CHORDAL DELETION

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Architectural Growth of Cu Nanoparticles Through Electrodeposition

    Get PDF
    Cu particles with different architectures such as pyramid, cube, and multipod have been successfully fabricated on the surface of Au films, which is the polycrystalline Au substrate with (111) domains, using the electrodeposition technique in the presence of the surface-capping reagents of dodecylbenzene sulfonic acid and poly(vinylpyrrolidone). Further, the growth evolution of pyramidal Cu nanoparticles was observed for the first time. We believe that our method might open new possibilities for fabricating nanomaterials of non-noble transition metals with various novel architectures, which can then potentially be utilized in applications such as biosensors, catalysis, photovoltaic cells, and electronic nanodevices

    Adaptively Transforming Graph Matching

    Full text link
    Recently, many graph matching methods that incorporate pairwise constraint and that can be formulated as a quadratic assignment problem (QAP) have been proposed. Although these methods demonstrate promising results for the graph matching problem, they have high complexity in space or time. In this paper, we introduce an adaptively transforming graph matching (ATGM) method from the perspective of functional representation. More precisely, under a transformation formulation, we aim to match two graphs by minimizing the discrepancy between the original graph and the transformed graph. With a linear representation map of the transformation, the pairwise edge attributes of graphs are explicitly represented by unary node attributes, which enables us to reduce the space and time complexity significantly. Due to an efficient Frank-Wolfe method-based optimization strategy, we can handle graphs with hundreds and thousands of nodes within an acceptable amount of time. Meanwhile, because transformation map can preserve graph structures, a domain adaptation-based strategy is proposed to remove the outliers. The experimental results demonstrate that our proposed method outperforms the state-of-the-art graph matching algorithms

    Magnetic Behavior of Surface Nanostructured 50-nm Nickel Thin Films

    Get PDF
    Thermally evaporated 50-nm nickel thin films coated on borosilicate glass substrates were nanostructured by excimer laser (0.5 J/cm2, single shot), DC electric field (up to 2 kV/cm) and trench-template assisted technique. Nanoparticle arrays (anisotropic growth features) have been observed to form in the direction of electric field for DC electric field treatment case and ruptured thin film (isotropic growth features) growth for excimer laser treatment case. For trench-template assisted technique; nanowires (70–150 nm diameters) have grown along the length of trench template. Coercive field and saturation magnetization are observed to be strongly dependent on nanostructuring techniques

    Expression of EBV Encoded viral RNA 1, 2 and anti-inflammatory Cytokine (interleukin-10) in FFPE lymphoma specimens: a preliminary study for diagnostic implication in Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein Barr Virus (EBV) plays a significant role as a cofactor in the process of tumorigenesis and has consistently been associated with a variety of malignancies. EBV encoded RNAs (EBER1 and EBER2) are the most abundant viral transcripts in latently EBV-infected cells and their role in viral infection is still unclear. Formalin Fixed Paraffin Embedded (FFPE) tissues of surgically removed carcinoma biopsies are widely available form but have never been exploited for expressional studies previously in Pakistan. Immunohistochemistry (IHC) and <it>in situ </it>hybridization (ISH) in FFPE biopsy tissues remains the gold standard for proving EBV relationship in a histopathological lesion but their reagents associated limitations confines their reliability in some applications. Recently introduced targeted drug delivery systems induce viral lytic gene expression and therefore require more sensitive method to quantify viral as well as cellular gene expression.</p> <p>Methods</p> <p>Eight (8) lymphoma samples were screened to detect the EBV genome. Qualitative and quantitative expression of EBV Encoded RNAs (EBER1, EBER2) and anti-inflammatory cytokine (interleukin-10) in FFPE EBV positive lymphoma tissue samples were then analysed by using Reverse transcriptase Polymerase Chain Reaction (RT-PCR) and Real Time Polymerase Chain Reaction (qRT-PCR), respectively.</p> <p>Results</p> <p>In this study we have successfully quantified elevated expressional levels of both cellular and viral transcripts, namely EBER1, EBER2 and anti-inflammatory cytokine (IL-10) in the FFPE Burkitt's lymphoma (BL) specimens of Pakistani origin.</p> <p>Conclusions</p> <p>These results indicate that FFPE samples may retain viral as well as cellular RNA expression information at detectable level. To our knowledge, this is first study which represents elevated expressional levels of EBER1, EBER2 and IL-10 in FFPE tissue samples of Burkitt's lymphoma in Pakistan. These observations will potentially improve current lacunas in clinical as well as diagnostic practices in Pakistan and can be further exploited to develop new strategies for studying cellular and/or viral gene expression.</p
    corecore