239 research outputs found

    Practical measurement of joint weak values and their connection to the annihilation operator

    Full text link
    Weak measurements are a new tool for characterizing post-selected quantum systems during their evolution. Weak measurement was originally formulated in terms of von Neumann interactions which are practically available for only the simplest single-particle observables. In the present work, we extend and greatly simplify a recent, experimentally feasible, reformulation of weak measurement for multiparticle observables [Resch and Steinberg (2004, Phys. Rev. Lett., 92, 130402)]. We also show that the resulting ``joint weak values'' take on a particularly elegant form when expressed in terms of annihilation operators.Comment: 13 pages, accepted to Physics Letters A (Dec. 2004

    One-dimensional structures behind twisted and untwisted superYang-Mills theory

    Full text link
    We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.Comment: 12 pages. Final version to appear in Lett. Math. Phys. with improved notation and misprints correcte

    Finite-precision measurement does not nullify the Kochen-Specker theorem

    Get PDF
    It is proven that any hidden variable theory of the type proposed by Meyer [Phys. Rev. Lett. {\bf 83}, 3751 (1999)], Kent [{\em ibid.} {\bf 83}, 3755 (1999)], and Clifton and Kent [Proc. R. Soc. London, Ser. A {\bf 456}, 2101 (2000)] leads to experimentally testable predictions that are in contradiction with those of quantum mechanics. Therefore, it is argued that the existence of dense Kochen-Specker-colorable sets must not be interpreted as a nullification of the physical impact of the Kochen-Specker theorem once the finite precision of real measurements is taken into account.Comment: REVTeX4, 5 page

    miR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan.

    Get PDF
    INTRODUCTION: MicroRNAs (miRNAs) have important regulatory functions in cellular processes and have shown promising potential as prognostic markers for disease outcome in patients with cancer. The aim of the present study was to find miRNA expression profiles in whole blood that were prognostic for overall survival (OS) in patients with metastatic colorectal cancer (mCRC) treated with cetuximab and irinotecan. METHODS: From 138 patients with mCRC in 3rd line therapy with cetuximab and irinotecan in a prospective phase II study, 738 pretreatment miRNAs were isolated and profiled from whole blood using the TaqMan MicroRNA Array v2.0. Mutation status of KRAS, BRAF, and PI3KCA was known. RESULTS: After Bonferroni adjustment, 6 miRNAs: (miR-345, miR-143, miR-34a*, miR-628-5p, miR-886-3p and miR-324-3p), were found associated with short OS. miR-345 was the strongest prognostic miRNA, significant in the full cohort and in the non-KRAS mutant population. miR-345, as a continuous variable in the full cohort, resulted in a hazard ratio (HR) of 2.38 per IQR (CI 95%: 1.8-3.1, P-value = 2.86e-07, Bonferroni adjusted, univariable analysis) and a HR = 1.75 per IQR (CI 95%: 1.24-2.48, P-Wald = 1.45e-03) in the multivariable analysis adjusted for gender, age, KRAS, PI3KCA and performance status. miR-345 was prognostic in progression-free survival (PFS) with a HR = 1.63 per IQR (CI 95%: 1.25-2.114, P-Wald = 2.92e-4) in the multivariable analysis. In addition, high miR-345 expression was associated with lack of response to treatment with cetuximab and irinotecan. CONCLUSION: We identified miR-345 in whole blood as a potential biomarker for clinical outcome. MiR-345 was a single prognostic biomarker for both OS and PFS in all patients and also in the non-KRAS mutant population

    Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release

    Get PDF
    The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Personalized peptide-based vaccination for treatment of colorectal cancer: rational and progress

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high rate of morbidity and mortality. A large proportion of patients with early stage CRC who undergo conventional treatments develop local recurrence or distant metastasis and in this group of advanced disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated with chemotherapy and chemo-resistance may limit continuing conventional treatment alone. Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features of tumors in combination with conventional therapeutic approach could be used to eradicate residual micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-based vaccination therapy is one class of cancer treatment that could be used to induce tumor-specific immune responses, through the recognition of specific antigen-derived peptides in tumor cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy in CRC patients as a novel therapeutic approach in treatment of CRC
    corecore