105 research outputs found
An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma
Abstract Background Lenalidomide is an immunomodulatory agent with antitumor activity in B-cell malignancies. This phase II trial aimed to demonstrate the safety and efficacy of lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), follicular grade 3 lymphoma (FL-III), or transformed lymphoma (TL). Methods Patients received oral lenalidomide 25 mg on days 1–21 every 28 days as tolerated or until progression. The primary end point was overall response rate (ORR). Results Two hundred and seventeen patients enrolled and received lenalidomide. The ORR was 35% (77/217), with 13% (29/217) complete remission (CR), 22% (48/217) partial remission, and 21% (45/217) with stable disease. The ORR for DLBCL was 28% (30/108), 42% (24/57) for MCL, 42% (8/19) for FL-III, and 45% (15/33) for TL. Median progression-free survival for all 217 patients was 3.7 months [95% confidence interval (CI) 2.7–5.1]. For 77 responders, the median response duration lasted 10.6 months (95% CI 7.0–NR). Median response duration was not reached in 29 patients who achieved a CR and in responding patients with FL-III or MCL. The most common adverse event was myelosuppression with grade 4 neutropenia and thrombocytopenia in 17% and 6%, respectively. Conclusion Lenalidomide is well tolerated and produces durable responses in patients with relapsed or refractory aggressive non-Hodgkin's lymphoma
Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies
CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement
Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project
The International Peripheral T-cell Lymphoma Project is a collaborative effort to better understand peripheral T-cell lymphoma (PTCL). A total of 22 institutions submitted clinical and pathologic material on 1314 cases. One objective was to analyze the clinical and pathologic features of 340 cases of PTCL, not otherwise specified. The median age of the patients was 60 years, and the majority (69%) presented with advanced stage disease. Most patients (87%) presented with nodal disease, but extranodal disease was present in 62%. The 5-year overall survival was 32%, and the 5-year failure-free survival was only 20%. The majority of patients (80%) were treated with combination chemotherapy that included an anthracycline, but there was no survival advantage. The International Prognostic Index (IPI) was predictive of both overall survival and failure-free survival (P < .001). Multivariate analysis of clinical and pathologic prognostic factors, respectively, when controlling for the IPI, identified bulky disease ( 65 10 cm), thrombocytopenia (< 150
7 109/L), and a high number of transformed tumor cells (> 70%) as adverse predictors of survival, but only the latter was significant in final analysis. Thus, the IPI and a single pathologic feature could be used to stratify patients with PTCL-not otherwise specified for novel and risk-adapted therapies
Benchmarks for Academic Oncology Faculty
The role of clinical researchers is vital to cancer progress. The teaching, research, and leadership roles that academic oncologists hold need to be accounted for and appropriately compensated. National metrics are currently inexistent, but are necessary to move the oncology research field forward. Clinical research and routine clinical care must be harmoniously integrated without competing. This article reviews the national landscape of clinical cancer research and proposes a call for action
A quantitative approach towards a better understanding of the dynamics of Salmonella spp. in a pork slaughter-line.
Pork contributes significantly to the public health disease burden caused by Salmonella infections. During the slaughter process pig carcasses can become contaminated with Salmonella. Contamination at the slaughter-line is initiated by pigs carrying Salmonella on their skin or in their faeces. Another contamination route could be resident flora present on the slaughter equipment. To unravel the contribution of these two potential sources of Salmonella a quantitative study was conducted. Process equipment (belly openers and carcass splitters), faeces and carcasses (skin and cutting surfaces) along the slaughter-line were sampled at 11 sampling days spanning a period of 4 months. Most samples taken directly after killing were positive for Salmonella. On 96.6% of the skin samples Salmonella was identified, whereas a lower number of animals tested positive in their rectum (62.5%). The prevalence of Salmonella clearly declined on the carcasses at the re-work station, either on the cut section or on the skin of the carcass or both (35.9%). Throughout the sampling period of the slaughter-line the total number of Salmonella per animal was almost 2log lower at the re-work station in comparison to directly after slaughter. Seven different serovars were identified during the study with S. Derby (41%) and S. Typhimurium (29%) as the most prominent types. A recurring S. Rissen contamination of one of the carcass splitters indicated the presence of an endemic 'house flora' in the slaughterhouse studied. On many instances several serotypes per individual sample were found. The enumeration of Salmonella and the genotyping data gave unique insight in the dynamics of transmission of this pathogen in a slaughter-line. The data of the presented study support the hypothesis that resident flora on slaughter equipment was a relevant source for contamination of pork
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Global gene flow releases invasive plants from environmental constraints on genetic diversity
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant
Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness
- …