474 research outputs found

    Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry

    Get PDF
    Recent attempts to detect the pion polarizability via analysis of γγππ\gamma\gamma\rightarrow\pi\pi measurements are examined. The connection between calculations based on dispersion relations and on chiral perturbation theory is established by matching the low energy chiral amplitude with that given by a full dispersive treatment. Using the values for the polarizability required by chiral symmetry, predicted and experimental cross sections are shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38

    The Little Higgs from a Simple Group

    Get PDF
    We present a model of electroweak symmetry breaking in which the Higgs boson is a pseudo-Nambu-Goldstone boson. By embedding the standard model SU(2) x U(1) into an SU(4) x U(1) gauge group, one-loop quadratic divergences to the Higgs mass from gauge and top loops are canceled automatically with the minimal particle content. The potential contains a Higgs quartic coupling which does not introduce one-loop quadratic divergences. Our theory is weakly coupled at the electroweak scale, it has new weakly coupled particles at the TeV scale and a cutoff above 10 TeV, all without fine tuning. We discuss the spectrum of the model and estimate the constraints from electroweak precision measurements.Comment: 29 pages, referencing error corrected after death threats, dude remove

    Smoking-gun signatures of little Higgs models

    Full text link
    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.Comment: 59 pages, 10 figures. v2: refs added, typos fixed, JHEP versio

    Chiral effective field theories of the strong interactions

    Full text link
    Effective field theories of the strong interactions based on the approximate chiral symmetry of QCD provide a model-independent approach to low-energy hadron physics. We give a brief introduction to mesonic and baryonic chiral perturbation theory and discuss a number of applications. We also consider the effective field theory including vector and axial-vector mesons.Comment: 22 pages, 9 figures, proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 201

    Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions

    Get PDF
    We present the perturbative and non-perturbative QCD structure of the dipole-dipole scattering amplitude in momentum space. The perturbative contribution is described by two-gluon exchange and the non-perturbative contribution by the stochastic vacuum model which leads to confinement of the quark and antiquark in the dipole via a string of color fields. This QCD string gives important non-perturbative contributions to high-energy reactions. A new structure different from the perturbative dipole factors is found in the string-string scattering amplitude. The string can be represented as an integral over stringless dipoles with a given dipole number density. This decomposition of the QCD string into dipoles allows us to calculate the unintegrated gluon distribution of hadrons and photons from the dipole-hadron and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure

    A Literature Review on Cloud Computing Adoption Issues in Enterprises

    Get PDF
    Part 3: Creating Value through ApplicationsInternational audienceCloud computing has received increasing interest from enterprises since its inception. With its innovative information technology (IT) services delivery model, cloud computing could add technical and strategic business value to enterprises. However, cloud computing poses highly concerning internal (e.g., Top management and experience) and external issues (e.g., regulations and standards). This paper presents a systematic literature review to explore the current key issues related to cloud computing adoption. This is achieved by reviewing 51 articles published about cloud computing adoption. Using the grounded theory approach, articles are classified into eight main categories: internal, external, evaluation, proof of concept, adoption decision, implementation and integration, IT governance, and confirmation. Then, the eight categories are divided into two abstract categories: cloud computing adoption factors and processes, where the former affects the latter. The results of this review indicate that enterprises face serious issues before they decide to adopt cloud computing. Based on the findings, the paper provides a future information systems (IS) research agenda to explore the previously under-investigated areas regarding cloud computing adoption factors and processes. This paper calls for further theoretical, methodological, and empirical contributions to the research area of cloud computing adoption by enterprises

    The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions

    Get PDF
    The influence of the nuclear medium upon the internal structure of a composite nucleon is examined. The interaction with the medium is assumed to depend on the relative distances between the quarks in the nucleon consistent with the notion of color neutrality, and to be proportional to the nucleon density. In the resulting description the nucleon in matter is a superposition of the ground state (free nucleon) and radial excitations. The effects of the nuclear medium on the electromagnetic and weak nucleon form factors, and the nucleon structure function are computed using a light-front constituent quark model. Further experimental consequences are examined by considering the electromagnetic nuclear response functions. The effects of color neutrality supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to [email protected]

    Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering

    Get PDF
    We compute the chromo-field distributions of static color-dipoles in the fundamental and adjoint representation of SU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model which leads to confinement of the color-charges in the dipole via a string of color-fields. We compute the energy stored in the confining string and use low-energy theorems to show consistency with the static quark-antiquark potential. We generalize Meggiolaro's analytic continuation from parton-parton to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle to calculate S-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes theorem, old Appendix A -> Sec.3, several references added

    Search for massive resonances decaying in to WW,WZ or ZZ bosons in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore