50 research outputs found

    How Do Bone Marrow Lesions Cause Osteoarthritis Pain? a Structural and Functional Tissue-Based Study

    Get PDF
    Background/Purpose: Susceptibility to ankylosing spondylitis (AS) is primarily genetic; thus far 113 susceptibility variants for AS have been identified. However, most of the AS associated SNPs do not directly affect protein-coding genes. Studies of disease- and trait-associated SNPs suggest they may act by affecting gene regulatory regions in specific cell types or tissues. Therefore, identifying the AS relevant cell types is crucial for further mechanistic studies. Methods: We applied several bioinformatics methods to utilize epigenetic, gene and protein expression information to identify the primary relevant cell types through which genetic variants associated with AS operate. In total, there are 113 AS associated loci; 39 of them show genome-wide significance in AS-only analyses, whereas the remainder are genome-wide significant in analyses leveraging pleiotrophy with other related diseases (Crohn’s disease (CD), psoriasis, primary sclerosing cholangitis (PSC) and ulcerative colitis (UC))1. Results: AS-associated SNPs are disproportionately found in regions bearing epigenetic marks indicating transcriptional activity found in immune cell types including monocytes, CD4+ and CD8+ T cells, NK cells, regulatory T cells, and B cells. Gene expression studies showed enrichment of AS associated loci in genes specifically expressed in monocytes and NK cells while protein expression study shows protein products of AS associated loci were significantly enriched in CD8+ T cells. Epigenetic analyses also showed evidence that AS-associated signals operate in gut cell types including in mucosa from the small intestine, sigmoid colon and rectum. These findings particularly relate to pleiotropic loci also associated with IBD, psoriasis, and PSC. Conclusion: These findings highlight the role of key immune cell types in the mechanism by which genetic associations with AS drive the disease, as well as providing further evidence for the involvement of the gut in the pathogenesis of AS. 1Ellinghaus D. at al, Nature Genetics 201

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation

    Analysis of the common genetic component of large-vessel vasculitides through a meta- Immunochip strategy

    Get PDF
    Giant cell arteritis (GCA) and Takayasu's arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P?=?7.54E-07; ORGCA?=?1.19, ORTAK?=?1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA?=?5.52E-04, ORGCA?=?1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with giant cell arteritis

    Get PDF
    Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analysed in 2,134 cases and 9,125 unaffected controls from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, P = 1.94E-54, per-allele OR = 1.79; and rs9275592, P = 1.14E-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, P = 1.23E-10, OR = 1.28; and rs128738, P = 4.60E-09, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis

    Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis

    Get PDF
    Funder: Research Committee on Intractable Vasculitides; The Ministry of Health, Labour and Welfare of Japan.Objectives: Evaluation of rituximab and glucocorticoids as therapy to induce remission after relapse in ANCA-associated vasculitis (AAV) in a prospective observational cohort of patients enrolled into the induction phase of the RITAZAREM trial. Methods: Patients relapsing with granulomatosis with polyangiitis or microscopic polyangiitis were prospectively enrolled and received remission-induction therapy with rituximab (4×375 mg/m2) and a higher or lower dose glucocorticoid regimen, depending on physician choice: reducing from either 1 mg/kg/day or 0.5 mg/kg/day to 10 mg/day by 4 months. Patients in this cohort achieving remission were subsequently randomised to receive one of two regimens to prevent relapse. Results: 188 patients were studied: 95/188 (51%) men, median age 59 years (range 19–89), prior disease duration 5.0 years (range 0.4–34.5). 149/188 (79%) had previously received cyclophosphamide and 67/188 (36%) rituximab. 119/188 (63%) of relapses had at least one major disease activity item, and 54/188 (29%) received the higher dose glucocorticoid regimen. 171/188 (90%) patients achieved remission by 4 months. Only six patients (3.2% of the study population) did not achieve disease control at month 4. Four patients died in the induction phase due to pneumonia (2), cerebrovascular accident (1), and active vasculitis (1). 41 severe adverse events occurred in 27 patients, including 13 severe infections. Conclusions: This large prospective cohort of patients with relapsing AAV treated with rituximab in conjunction with glucocorticoids demonstrated a high level of efficacy for the reinduction of remission in patients with AAV who have relapsed, with a similar safety profile to previous studies

    A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    Get PDF
    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1∗04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function
    corecore