17 research outputs found

    Salivary Gland Transcriptomes and Proteomes of Phlebotomus tobbi and Phlebotomus sergenti, Vectors of Leishmaniasis

    Get PDF
    Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature
    corecore