58 research outputs found

    Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder

    Get PDF
    <p>Abstract</p> <p>Background and objective</p> <p>This study examined whether zinc intake was associated with lower risk of smoking-induced obstructive lung disorder through interplay with cadmium, one of major toxicants in cigarette smoke.</p> <p>Methods</p> <p>Data were obtained from a sample of 6,726 subjects aged 40+ from the Third National Health and Nutrition Examination Survey. The forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured using spirometry. Gender-, ethnicity-, and age-specific equations were used to calculate the lower limit of normal (LLN) to define obstructive lung disorder as: observed FEV1/FVC ratio and FEV1 below respective LLN. Zinc intake was assessed by questionnaire. Logistic regression analysis was applied to investigate the associations of interest.</p> <p>Results</p> <p>The analyses showed that an increased prevalence of obstructive lung disorder was observed among individuals with low zinc intake regardless of smoking status. The adjusted odds of lung disorder are approximately 1.9 times greater for subjects in the lowest zinc-intake tertile than those in the highest tertile (odds ratio = 1.89, 95% confidence interval = 1.22-2.93). The effect of smoking on lung function decreased considerably after adjusting for urinary cadmium. Protective association between the zinc-to-cadmium ratio (log-transformed) and respiratory risk suggests that zinc may play a role in smoking-associated lung disorder by modifying the influence of cadmium.</p> <p>Conclusions</p> <p>While zinc intake is associated with lower risk of obstructive lung disorder, the role of smoking cession and/or prevention are likely to be more important given their far greater effect on respiratory risk. Future research is warranted to explore the mechanisms by which zinc could modify smoking-associated lung disease.</p

    Vitamin A and D intake in pregnancy, infant supplementation, and asthma development:the Norwegian Mother and Child Cohort

    Get PDF
    Background Western diets may provide excess vitamin A, which is potentially toxic and could adversely affect respiratory health and counteract benefits from vitamin D. Objective The aim of this study was to examine child asthma at age 7 y in relation to maternal intake of vitamins A and D during pregnancy, infant supplementation with these vitamins, and their potential interaction. Design We studied 61,676 school-age children (born during 2002–2007) from the Norwegian Mother and Child Cohort with data on maternal total (food and supplement) nutrient intake in pregnancy (food-frequency questionnaire validated against biomarkers) and infant supplement use at age 6 mo (n = 54,142 children). Linkage with the Norwegian Prescription Database enabled near-complete follow-up (end of second quarter in 2015) for dispensed medications to classify asthma. We used log-binomial regression to calculate adjusted RRs (aRRs) for asthma with 95% CIs. Results Asthma increased according to maternal intake of total vitamin A [retinol activity equivalents (RAEs)] in the highest (≥2031 RAEs/d) compared with the lowest (≤779 RAEs/d) quintile (aRR: 1.21; 95% CI: 1.05, 1.40) and decreased for total vitamin D in the highest (≥13.6 µg/d) compared with the lowest (≤3.5 µg/d) quintile (aRR: 0.81; 95% CI: 0.67, 0.97) during pregnancy. No association was observed for maternal intake in the highest quintiles of both nutrients (aRR: 0.99; 95% CI: 0.83, 1.18) and infant supplementation with vitamin D or cod liver oil. Conclusions Excess vitamin A (≥2.5 times the recommended intake) during pregnancy was associated with increased risk, whereas vitamin D intake close to recommendations was associated with a reduced risk of asthma in school-age children. No association for high intakes of both nutrients suggests antagonistic effects of vitamins A and D. This trial was registered at http://www.clinicaltrials.gov as NCT03197233. © 2018 American Society for Nutrition. This work is written by (a) US Government employee(s) and is in the public domain in the US

    Vegan diets : practical advice for athletes and exercisers.

    Get PDF
    With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge

    Biomarkers of Nutrition for Development (BOND)—Iron Review

    Get PDF
    This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation
    • …
    corecore