10 research outputs found

    New species longevity record for the northern quahog (=hard clam), Mercenaria mercenaria

    Get PDF
    Author Posting. © National Shellfisheries Association, 2011. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 30 (2011): 35-38, doi:10.2983/035.030.0106.Twenty-two large shells (>90 mm shell height) from a sample of live collected hard shell clams, Mercenaria mercenaria, from Buzzards Bay, Woods Hole, Cape Cod, MA, were subjected to sclerochronological analysis. Annually resolved growth lines in the hinge region and margin of the shell were identified and counted; the age of the oldest clam shell was determined to be at least 106 y. This age represents a considerable increase in the known maximum life span for M. mercenaria, more than doubling the maximum recorded life span of the species (46 y). More than 85% of the clam shells aged had more than 46 annual increments, the previous known maximum life span for the species. In this article we present growth rate and growth performance indicators (the overall growth performance and phi prime) for this record-breaking population of M. mercenaria. Recently discovered models of aging require accurate age records and growth parameters for bivalve populations if they are to be utilized to their full potential.This work was supported by grants from the American Diabetes Association (to Z. U.), American Federation for Aging Research (to A. C.), the University of Oklahoma College of Medicine Alumni Association (to A. C.), the BBSRC (to C. A. R.),the National Institutes of Health (AT006526 and HL077256 to Z. U.; AG022873 and AG025063 to S. N. A.), and the DFG Cluster of Excellence ‘‘Future Ocean’’ (to E. P.)

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    The potential of the marine bivalve mollusc Glossus humanus (L.) as a sclerochronological archive

    Get PDF
    In order to assess its potential as a sclerochronological archive, we present statistical and geochemical analyses of internal growth increment series in shells of the heart cockle Glossus humanus (L.), a large marine bivalve. The investigated samples were collected from Loch Sunart and the Sound of Mull, Scotland, United Kingdom. High-resolution stable isotope (δ18Ο) analyses and radiocarbon (14C) determinations indicated that G. humanus forms annual growth lines. Examination of the growth increment series revealed that the maximum longevity of G. humanus in this region was 78 years. Radiocarbon dating and crossmatching techniques, derived from dendrochronology, were used to provide an estimation of the temporal distribution of the fossil G. humanus. Of the shells that contained >25 growth increments, seven were found to statistically crossmatch, including shells from two distinct sites 15 km apart. The calibrated 14C determinations independently confirmed the crossmatching of three G. humanus shells from the Sound of Mull with a separately constructed Glycymeris glycymeris chronology and a further three G. humanus shells from site 3, in the main basin of Loch Sunart, but indicate a significant difference (site 1) in the antiquity of the two G. humanus populations. Radiocarbon dating indicated that, despite their fragile nature, G. humanus shells remain preserved in near original condition for at least 700 years. Given the small amount of available shell material, it is unlikely that G. humanus will become a key species for the construction of long absolutely dated sclerochronologies. However, these data do indicate that the annually resolved G. humanus growth series could be used to supplement series from other long-lived bivalves and facilitate the construction of a robust multispecies sclerochronology spanning the last 1000 years

    Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica

    Get PDF
    The shortening of telomeres as a causative factor in ageing is a widely discussed hypothesis in ageing research. The study of telomere length and its regenerating enzyme telomerase in the longest-lived non-colonial animal on earth, Arctica islandica, should inform whether the maintenance of telomere length plays a role in reaching the extreme maximum lifespan (MLSP) of > 500 years in this species. Since longitudinal measurements on living animals cannot be achieved, a cross-sectional analysis of a short-lived (MLSP 40 years from the Baltic Sea) and a long-lived population (MLSP 226 years Northeast of Iceland) and in different tissues of young and old animals from the Irish Sea was performed. A high heterogeneity of telomere length was observed in investigated A. islandica over a wide age range (10–36 years for the Baltic Sea, 11–194 years for Irish Sea, 6–226 years for Iceland). Constant telomerase activity and telomere lengths were detected at any age and in different tissues; neither correlated with age or population habitat. Stable telomere maintenance might contribute to the long lifespan of A. islandica. Telomere dynamics are no explanation for the distinct MLSPs of the examined populations and thus the cause of it remains to be investigated
    corecore