787 research outputs found

    Interdisciplinary Perspectives on Poverty Measurement, Epistemic Injustices and Social Activism

    Get PDF
    As we enter the 2020s, global poverty is still a grave and persistent problem. Alleviating and eradicating poverty within and across the world’s societies requires a thorough understanding of its nature and extent. Although economists still standardly measure absolute and relative poverty in monetary terms, a consensus is emerging that poverty is a socially relational problem involving deprivations in multiple dimensions, including health, standard of living, education and political participation. The anthology Dimensions of Poverty advances the interdisciplinary debate on multidimensional poverty, and features contributions from leading international experts and early career researchers (including from the Global South). This introductory chapter gives an overview of formative debates, central concepts and key findings. While monetary poverty measures are still dominant in public and academic debate, their explanatory power has been drawn into question. We discuss relevant criticisms before outlining the normative concepts that can inform both multidimensional poverty and monetary measures, including basic capabilities, basic needs and social primary goods. Next, we introduce several influential multidimensional poverty indices, including the Human Development Index and the Multidimensional Poverty Index. The anthology shows in detail how such measures can be improved, from a variety of disciplinary perspectives. It shows that there are different methods of poverty research that require further investigation, including participatory studies, (value) surveys, public consensus building, the constitutional approach, and financial diaries. Finally, we show that there is an ongoing problem of epistemic asymmetries in global poverty research, and discuss responsibility for addressing poverty, including the responsibilities of academics. The remainder of the chapter is dedicated to a more detailed preview of the volume’s 20 contributions, which are assembled along the following five themes: (I) poverty as a social relation; (II) epistemic injustices in poverty research; (III) the social context of poverty; (IV) measuring multidimensional poverty; and (V) country cases

    Studying the Effect of Measured Solar Power on Evolutionary Multi-objective Prediction Intervals

    Get PDF
    This paper has been presented at: 19th Intelligent Data Engineering and Automated Learning (IDEAL 2018)While it is common to make point forecasts for solar energy generation, estimating the forecast uncertainty has received less attention. In this article, prediction intervals are computed within a multi-objective approach in order to obtain an optimal coverage/width tradeoff. In particular, it is studied whether using measured power as an another input, additionally to the meteorological forecast variables, is able to improve the properties of prediction intervals for short time horizons (up to three hours). Results show that they tend to be narrower (i.e. less uncertain), and the ratio between coverage and width is larger. The method has shown to obtain intervals with better properties than baseline Quantile Regression.This work has been funded by the Spanish Ministry of Science under contract ENE2014-56126-C2-2-R (AOPRIN-SOL project)

    Co- and multimorbidity patterns in primary care based on episodes of care: results from the German CONTENT project

    Get PDF
    Contains fulltext : 69171.pdf (publisher's version ) (Open Access)BACKGROUND: Due to technological progress and improvements in medical care and health policy the average age of patients in primary care is continuously growing. In equal measure, an increasing proportion of mostly elderly primary care patients presents with multiple coexisting medical conditions. To properly assess the current situation of co- and multimorbidity, valid scientific data based on an appropriate data structure are indispensable. CONTENT (CONTinuous morbidity registration Epidemiologic NeTwork) is an ambitious project in Germany to establish a system for adequate record keeping and analysis in primary care based on episodes of care. An episode is defined as health problem from its first presentation by a patient to a doctor until the completion of the last encounter for it. The study aims to describe co- and multimorbidity as well as health care utilization based on episodes of care for the study population of the first participating general practices. METHODS: The analyses were based on a total of 39,699 patients in a yearly contact group (YCG) out of 17 general practices in Germany for which data entry based on episodes of care using the International Classification of Primary Care (ICPC) was performed between 1.1.2006 and 31.12.2006. In order to model the relationship between the explanatory variables (age, gender, number of chronic conditions) and the response variables of interest (number of different prescriptions, number of referrals, number of encounters) that were applied to measure health care utilization, we used multiple linear regression. RESULTS: In comparison to gender, patients' age had a manifestly stronger impact on the number of different prescriptions, the number of referrals and number of encounters. In comparison to age (beta = 0.043, p < 0.0001), multimorbidity measured by the number of patients' chronic conditions (beta = 0.51, p < 0.0001) had a manifestly stronger impact the number of encounters for the observation period. Moreover, we could observe that the number of patients' chronic conditions had a significant impact on the number of different prescriptions (beta = 0.226, p < 0.0001) as well as on the number of referrals (beta = 0.3, p < 0.0001). CONCLUSION: Documentation in primary care on the basis of episodes of care facilitates an insight to concurrently existing health problems and related medical procedures. Therefore, the resulting data provide a basis to obtain co- and multimorbidity patterns and corresponding health care utilization issues in order to understand the particular complex needs caused by multimorbidity

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Clinical Significance of Age at the Time of Diagnosis among Young Breast Cancer Patients

    Get PDF
    PURPOSE: The aims of this study were to investigate outcomes corresponding to age at diagnosis as categorized into 5-year intervals and to explore whether endocrine-responsive tumors display clinical benefits from endocrine therapy after chemotherapy among young breast cancer patients. METHODS: A total of 1,171 patients who were under 40 years old at diagnosis between 1985 and 2007 were divided into 3 subgroups: ≤30 years (Group I, 13.3%), 31-35 years (Group II, 30.5%), and 36-40 years (Control group, 56.2%). Clinicopathological factors and outcomes were compared using a chi-square test, the Kaplan-Meier method, and Cox's hazards models. RESULTS: There were no significant differences in the characteristics and treatment patterns between the 3 groups, except for the grade, hormone receptors expression, and use of endocrine therap. Group I showed the worst survival and subsequently Group II presented worse outcomes than the Control group, mainly among hormone receptors-positive patients. Groups I and II showed increased risks of recurrence and death in multivariate analyses. Among 529 hormone receptors-positive patients who received chemotherapy, favorable outcomes for patients who were treated with endocrine agents were demonstrated, mainly in patients aged 35 years or less. However, interaction tests between the use of endocrine therapy and age at diagnosis were not significant. CONCLUSION: Age at diagnosis is an independent prognostic factor and the age of 35 years is a rational cut-off among young patients. Our subgroup analysis suggests that endocrine therapy may provide additional benefits even in young breast cancers. Therefore, further researches should be directed towards improving outcomes for this population.ope

    CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development

    Get PDF
    The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule dynamics or affects extrinsic associations with specific interacting partners remains to be determined. Here we identify the microtubule-binding protein centriole and spindle–associated protein (CSAP), which colocalizes with polyglutamylated tubulin to centrioles, spindle microtubules, and cilia in human tissue culture cells. Reducing tubulin polyglutamylation prevents CSAP localization to both spindle and cilia microtubules. In zebrafish, CSAP is required for normal brain development and proper left–right asymmetry, defects that are qualitatively similar to those reported previously for depletion of polyglutamylation-conjugating enzymes. We also find that CSAP is required for proper cilia beating. Our work supports a model in which polyglutamylation can target selected microtubule-associated proteins, such as CSAP, to microtubule subpopulations, providing specific functional capabilities to these populations.National Institutes of Health (U.S.) (Grant no. GM074746)American Cancer Society. Research Scholar Grant (121776)National Institute of General Medical Sciences (U.S.) (GM088313

    Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography

    Get PDF
    温度による酵素の構造変化を分子動画撮影 様々な生体高分子のダイナミクスを決定する新たな方法論. 京都大学プレスリリース. 2023-09-19.Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics

    An international survey of patients with thalassemia major and their views about sustaining life-long desferrioxamine use

    Get PDF
    BACKGROUND: Management of thalassemia major requires patients to have life-long access to a treatment regimen of regular blood transfusions coupled with iron chelation therapy. The objective of this study was to investigate patients' reasons for missing iron chelation therapy with desferrioxamine, and the support to sustain life-long adherence to treatment. METHODS: From October 1999 to May 2000 a survey of patients with thalassemia major was conducted in ten countries: Cyprus, Egypt, Greece, Hong Kong, India, Iran, Italy, Jordan, Taiwan, and the United States. RESULTS: 1,888 questionnaires (65%) were returned. Most patients (1,573) used desferrioxamine, and 79% administered a dose at least 4 days a week. Inaccessibility of the drug was a common reason for missing a dose in India (51%), and in Iran (25%), whereas, in any other country, it was a reason for less than 17% of patients. Overall, 58% reported reasons for missing a dose related to their beliefs or feelings about the medication, and 42% drug-related side effects. CONCLUSION: Many patients miss doses of desferrioxamine and an opportunity remains to develop interventions that provide more support to sustain use of desferrioxamine

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore