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Abstract. While it is common to make point forecasts for solar energy
generation, estimating the forecast uncertainty has received less atten-
tion. In this article, prediction intervals are computed within a multi-
objective approach in order to obtain an optimal coverage/width trade-
off. In particular, it is studied whether using measured power as an
another input, additionally to the meteorological forecast variables, is
able to improve the properties of prediction intervals for short time hori-
zons (up to three hours). Results show that they tend to be narrower
(i.e. less uncertain), and the ratio between coverage and width is larger.
The method has shown to obtain intervals with better properties than
baseline Quantile Regression.

Keywords: Solar energy · Prediction intervals
Multi-objective optimization

1 Introduction

In recent years, solar energy has shown a large increase in its presence in the elec-
tricity grid energy mix [1]. Having accurate point forecasts is important for solar 
energy penetration in the electricity markets and most of the research has focused 
on this topic. However, due to the high variability of solar radiation, it is also 
important to estimate the uncertainty around point forecasts. A convenient way 
of quantifying the variability of forecasts is by means of Prediction Intervals (PI)
[2]. A PI is a pair of lower and upper bounds that contains future forecasts with a 
given probability (or reliability), named Prediction Interval Nominal Coverage 
(PINC). There are several methods for computing PI [3]: Delta method, Bayesian 
technique, Mean-Variance, and Bootstrap method. However, a recent evolution-
ary approach has shown better performance than the other methods in several 
domains [3], including renewable energy forecasting [4,5]. This approach, known 
as LUBE (Lower Upper Bound Estimation), uses artificial neural networks with 
two outputs, for the lower and upper bound of the interval, respectively. The 
network weights are optimized using evolutionary computation techniques such 
as Simulated Annealing (SA) [6] or Particle Swarm Optimization (PSO) [7].
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The optimization of PI is inherently multi-objective, because of the trade-off 
between the two main properties of intervals: coverage and width. Coverage can 
be trivially increased by enlarging intervals, but obtaining high coverage with 
narrow intervals is a difficult optimization problem. Typical approaches to LUBE 
aggregate both goals so that optimization can be carried out by single-objective 
optimization methods (such as SA or PSO). In [8], it was proposed to use a multi-
objective approach (using the Multi-objective Particle Swarm Optimization 
evolutionary algorithm or MOPSO [9]) for this purpose. The main advantage of 
this approach is that in a single run, it is able to obtain not one, but a set of 
solutions (the Pareto front) with the best trade-offs between coverage and width. 
If a solution with a particular PINC value is desired, it can be extracted from the 
front. In that work, due to the nature of the data, the aim was to estimate solar 
energy PI on a daily basis, and using a set of meteorological variables forecast for 
the next day.

In some works, meteorological forecasts are combined with measurements for 
training the models with the purpose of improving predictions [10,11]. In 
particular, in [12] it was observed that using measured power (in addition to 
meteo variables) was helpful to improve point forecasts for short term horizons. In 
the present work, we apply the MOPSO approach for estimating solar power PI, 
studying the influence of using measured solar power, in addition to mete-
orological forecasts, on the quality of intervals (coverage and interval width). In a 
similar way to point forecasts where using measured values improves the accuracy 
of the forecast if the prediction horizon is close to the measurement, we expect 
that using measured values will have an effect of reducing the uncer-tainty of 
prediction intervals. For that purpose, short prediction horizons of up to three 
hours will be considered in the experiments, in steps of 1 h. Linear Quantile 
Regression method [13] is also used as baseline with the purpose to comparison, 
using the R quantreg package [14].

The rest of the article is organized as follows: Sect. 2 describes the dataset used 
for experiments, Sect. 3 summarizes the evolutionary multi-objective app-roach 
for interval optimization, as well as the baseline method Quantile Regres-sion. 
Section 4 describes the experimental setup and the results. Conclusions are finally 
drawn in Sect. 5.

2 Data Description

The data used in this work is obtained from the Global Energy Forecasting 
Competition 2014 (GEFCom2014), specifically from task 15 of the probabilis-tic 
solar power forecasting problem [15]. The data provided included measured solar 
power and meteorological forecasts. Solar power was provided on an hourly basis, 
from 2012-04-01 01:00 to 2014-06-01 00:00 UTC (for training) and from 
2014-06-01 01:00 to 2014-07-01 00:00 UTC for testing. The meteorological fore-
casts included 12 weather variables that had been obtained from the European 
Centre for Medium-range Weather Forecasts (ECMWF) [15]. Those variables 
were issued everyday at midnight UTC for each of the next 24 h. These 12 vari-
ables are: Total column liquid water (kg m-2), Total column ice water (kg m-2),
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Surface pressure (Pa), Relative humidity at 1000 mbar (r), Total cloud cover 
(0’1), 10-metre U wind component (m s-1), 10-metre V wind component (m s-
1), 2-metre temperature (K), Surface solar rad down (J m-2), Surface thermal 
rad down (J m-2), Top net solar rad (J m-2), and Total precipitation (m).

Data was provided for three power plants in Australia, although their exact 
location was not disclosed. In this article we are using station number 3 and 
the short term forecasting horizons (+1, +2, and +3 h). For some of the work 
carried out in this article, it is necessary to separate the available training data 
into training and validation. The validation set is used for model selection tasks, 
such as choosing the best neural network architecture or the best number of 
optimization iterations. In this work, the first 80% of the dataset has been used 
for training and the remaining 20% for validation.

3 Multi-objective Optimization for Prediction Intervals

The purpose of this section is to summarize the multi-objective evolutionary 
optimization of PI reported in [8]. This approach is based on LUBE [3], where a 3-
layered neural network is used to estimate the lower and upper of bounds of 
prediction intervals for a particular input, but using a multi-objective evolu-
tionary approach. The network receives as inputs meteorological variables. The 
outputs are the lower and upper bounds estimated by the network for those 
particular inputs. Although the observed irradiance for some particular inputs is 
available in the dataset, the upper and lower bounds are not. Hence, the stan-
dard back-propagation algorithm cannot be used to train the network (i.e. it is 
not a standard supervised regression problem, because the target output is not 
directly available). Therefore, in this approach, an evolutionary optimization 
algorithm is used to adjust the weights of the neural network by optimizing the 
two most relevant goals for PI: reliability and interval width. A prediction inter-
vals is reliable if it achieves some specified reliability level or nominal coverage 
(i.e. PINC). This happens when irradiance observations lay inside the interval at 
least as frequently as the specified PINC. It is always possible to have high 
reliability by using very wide intervals. Therefore, the second goal used to evalu-
ate PI is interval width (with the aim of obtaining narrow intervals). Reliability 
and interval width are formalized in the following paragraphs.

Let M = {(Xi, ti)i=0 N } be a set of observations, where Xi is a vector with 
the input variables and ti

···
is the observed output variable. Let PIi = [Lowi, U ppi) 

be the prediction interval for observation Xi (Lowi, Uppi would be the outputs 
of the neural network). Then, the reliability (called Prediction Interval Coverage 
Probability or PICP) is computed by Eq. 1 and the Average Interval Width 
(AIW) by Eq. 2.

PICP =
1
N

N∑

i=0

χPIi(Xi) (1)
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AIW =
1
N

N∑

i=0

(Uppi − Lowi) (2)

where N is the number of samples, χPIi(Xi) is the indicator function for interval
PIi (it is 1 if ti ∈ PIi = [Lowi, Uppi) and 0 otherwise). Uppi and Lowi are the
upper and lower bounds of the interval, respectively.

Given that there is a trade-off between reliability and width (PICP and AIW,
respectively), the multi-objective approach (MOPSO) proposed in [8] is used to
tackle the problem studied in this article. The MOPSO particles encode the
weights of the networks, and the goals to be minimized are 1 − PICP (Eq. 1)
and AIW (Eq. 2). In this work, the inputs to the networks are the meteorological
variables given in the dataset (see Sect. 2) or any other information that may be
useful for the estimation of solar irradiance (as solar power measurements).

The final result of MOPSO optimization is a non-dominated set of solutions
(a Pareto front) as shown in Fig. 1. Each point (or solution) in the front rep-
resents the x = AIW and y = 1 − PICP of a particular neural network that
achieves those values on the training dataset. If a particular target PINC is
desired, then the closest solution in the Pareto front to that PINC is selected.
That solution corresponds to a neural network that can be used on new data
(e.g. test data) in order to compute PI for each of the instances in the test data.
Figure 1 shows the solution that would be extracted from a Pareto front for
PINC = 0.9.
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Fig. 1. Pareto front of solutions. Selected solution for PICP = 0.90.

In order to have a baseline to compare MOPSO results, Linear Quantile 
Regression (QR) has been used [13]. QR is a fast technique for estimating quan-
tiles using linear models. While the standard method of least squares estimates 
the conditional mean of the response variable, quantile regression is able to esti-
mate the median or other quantiles. This can be used for obtaining PI. Let q1
and q2 be the 1−PINC

2 and 1+PINC
2 quantiles, respectively. Quantile q1 leaves

a 1−PINC
2 probability tail to the left of the distribution and quantile q2 leaves

1−PINC
2 probability tail to the right of the distribution. Therefore, the interval
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[q1, q2] has a coverage of PINC. Quantile Regression is used to fit two linear 
models that, given some particular input Xi, returns q1 and q2 with which the 
interval [q1, q2] can be constructed.

4 Experimental Validation

As mentioned in the introduction, one of the goals of this article is to study 
the influence on the quality of intervals, of using measured solar power at the 
time of prediction t0 = 00 : 00 UTC, in addition to the meteorological forecasts 
(that have already been described in Sect. 2). t0 corresponds to 10:00 AM at the 
location in Australia, which is the time when meteo forecasts are issued everyday. 
With that purpose two derived datasets have been constructed, one with only the 
12 meteorological variables and another one with those variables and the 
measured solar power at t0. The latter (meteo + measured power) will be 
identified with +Pt0 . In both cases, the day of the year (from 1 to 365) has also 
been used as input, because knowing this information might be useful for 
computing the PI.

Table 1. Best combination of parameters for each prediction horizon

Horizon MOPSO MOPSO +Pt0

Neurons Iterations Neurons Iterations

1 h 15 8000 50 8000

2 h 8 8000 10 8000

3 h 6 8000 15 8000

We have followed a methodology similar to that of [8]. Different number of 
hidden neurons for the neural network (2, 4, 6, 8, 10, 15, 20, 30, and 50) and 
different number of iterations for PSO (4000, 6000, and 8000) has been tested. 
The process involves running PSO with the training dataset and using the 
validation dataset to select the best parameters (neurons and iterations). Given 
that PSO is stochastic, PSO has been run 5 times for each number of neurons and 
iterations, starting with different random number generator seeds. Similarly to 
[8], the measure used to select the best parameter combination has been the 
average hypervolume of the front on the validation set (the validation front is 
computed by evaluating each neural network from the training Pareto front, on 
the validation set). It is important to remark that, differently to [8], this has been 
done for each different prediction horizon. That means that this parameter 
optimization process has been carried out independently for each of three 
forecasting horizons considered in this work (+1 h, +2 h, +3 h). Table 1 displays 
the best combination of parameters for each horizon and whether Pt0 is used or 
not. It can be observed that the number of hidden neurons depends on the horizon 
and that the number of iterations is typically the maximum value
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tried (8000). We have not extended the number of iterations for PSO because 
no further change was observed in the Pareto fronts by doing so.

In order to evaluate the experimental results, three target nominal coverage 
values (PINC) have been considered: 0.9, 0.95, and 0.99. The Quantile Regression 
approach must be run for each desired PINC value. The MOPSO approach needs 
to be run only once, because it provides a set of solutions (the Pareto front), 
out of which the solutions for particular PINCs can be extracted, as it has been 
explained in Sect. 3 (see Fig. 1).

Table 2. Evaluation measures on the test set for the four different approaches (QR,
QR + Pt0 , MOPSO, MOPSO + Pt0 ). Left: Delta coverage. Middle: Average interval 
width (AIW). Right: PICP/AIW ratio.

Delta coverage AIW PICP/AIW ratio

PINC 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

QR 0.027 0.072 0.089 0.756 0.611 0.495 1.291 1.438 1.640

QR +Pt0 0.020 0.052 0.084 0.732 0.571 0.487 1.373 1.609 1.693

MOPSO 0.036 0.074 0.142 0.715 0.561 0.461 1.344 1.568 1.652

MOPSO +Pt0 0.020 0.051 0.061 0.646 0.495 0.427 1.530 1.861 2.018

The performance of the solutions for each horizon, has been evaluated using 
three evaluation measures. The first one, named delta coverage in Table 2, mea-
sures how much the solution PICP fails to achieve the target PINC (on the test 
set). If the PICP fulfills the PINC (PICP  >= PINC ) then delta coverage is 
zero, otherwise it is computed as PINC  − PICP  (in other words: delta cover-
age = max(0, P INC  − PICP )). The latter measure evaluates PINC fulfillment, 
but it only tells part of the performance because it is trivial to obtain small (or 
even zero) delta coverage by using very wide intervals. Thus, the second evalua-
tion measure uses the ratio between PICP and the average interval width (AIW), 
which is calculated as PICP/AIW. Solutions that achieve high PICPs by means 
of large intervals will obtain low values for this ratio. Good solutions, with an 
appropriate tradeoff between PICP and width will obtain high values on this 
measure. Additionally, the average interval width (AIW) will also be shown.

Table 2 display the values of the three evaluation measures averaged over the 
5 runs and the 3 horizons, for the three different values of PINC (0.99, 0.95, and 
0.90). In Table 2 it can be seen that delta coverage (left) is larger than zero for all 
methods, which means that there are horizons for which PINC is not achieved. 
The best delta coverage values for all PINC values are obtained by MOPSO + Pt0 

(this means that PICP is closer to the target PINC). It is also observed that the 
use of the measured solar power at 00:00 UTC helps MOPSO + Pt0 to obtain 
smaller delta coverage. Using Pt0 also helps QR in this regard. The same trend can 
be observed with respect to the AIW (see Table 2 middle) and the PICP/AIW 
ratio (Table 2 right). Therefore, MOPSO + Pt0 obtains the best coverage, using 
the narrowest intervals, and reaching the best tradeoff between PICP and AIW.
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Next, we will compare both approaches (MOPSO and QR) breaking down 
results by horizon. Table 3 shows the PICP/AIW ratio and the AIW for all 
methods, horizons and PINC values. In the case of MOPSO and MOPSO + Pt0 , 
the average and standard deviation of the 5 runs are displayed. With respect to 
the ratio, it can be seen that using the Pt0 helps MOPSO for all horizons and 
target PINC values. In the QR case, it helps for the first horizon but not (in 
general) for the rest. The best performer for all horizons and target PINC is 
MOPSO + Pt0 , except for the second horizon and PINC = 0.99, where it is 
slightly worse than QR without Pt0 . The same trend can be observed for the AIW 
except for the third horizon and PINC = 0.90, where MOPSO and MOPSO + Pt0 

are very similar.
Finally, for MOPSO, the improvement in the PICP/AIW ratio by using Pt0 is 

larger for the first horizon than for the rest. For horizon 1, the improvement in 
ratio is 25%, 39%, and 40% for PINC values 0.99, 0.95, and 0.90, respectively. The 
reduction in AIW follows a similar behavior: 18%, 20%, and 18%, respectively. 
For the rest of horizons, there is also improvement, but smaller in size, and the 
larger the horizon, the smaller the improvement.

Table 3. Average and standard deviation of the PICP/AIW ratio and AIW per pre-
diction horizon (1 h, 2 h, 3 h). PINC values = 0.99, 0.95, 0.90.

HorizonMethod PICP/AIW ratio AIW

0.99 0.95 0.90 0.99 0.95 0.90

1 QR 1.258 1.416 1.561 0.742 0.589 0.491

1 QR+Pt0 1.648 1.773 1.959 0.607 0.447 0.422

1 MOPSO 1.415 (0.085) 1.569 (0.114) 1.635 (0.098) 0.671 (0.048) 0.538 (0.040) 0.428 (0.011)

1 MOPSO+Pt0 1.762 (0.127)2.174 (0.117)2.294 (0.194)0.552 (0.055)0.430 (0.039)0.351 (0.031)

2 QR 1.452 1.481 1.761 0.666 0.585 0.473

2 QR+Pt0 1.375 1.574 1.565 0.677 0.613 0.485

2 MOPSO 1.283 (0.099) 1.508 (0.114) 1.571 (0.044) 0.747 (0.058) 0.596 (0.051) 0.484 (0.026)

2 MOPSO+Pt0 1.446 (0.108) 1.734 (0.114)1.918 (0.184)0.691 (0.057) 0.515 (0.048)0.451 (0.062)

3 QR 1.162 1.417 1.599 0.861 0.659 0.521

3 QR+Pt0 1.097 1.481 1.555 0.911 0.652 0.554

3 MOPSO 1.333 (0.057) 1.628 (0.106) 1.749 (0.235) 0.727 (0.031) 0.550 (0.027) 0.470 (0.040)

3 MOPSO+Pt0 1.383 (0.092)1.674 (0.216)1.842 (0.209)0.696 (0.047)0.540 (0.065)0.478 (0.026)

5 Conclusions

In this article, we have used a multi-objective approach, based on Particle Swarm
Optimization, to obtain prediction intervals with an optimal tradeoff between
interval width and reliability. In particular, the influence on short prediction hori-
zons, of using measured solar power as an additional input, has been studied.
This has shown to be beneficial, because prediction interval tend to be narrower
(hence, less uncertainty on the forecast), and the ratio between coverage and
width is larger. This is true for the three short prediction horizons studied, but
the improvement is larger for the shortest one (+1 h). Results have been com-
pared to Quantile Regression and shown to be better for all evaluation criteria.
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While Quantile Regression also benefits from using measured solar radiation,
this happens only for the 1 h horizon, but not for +2 or +3 h.
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