248 research outputs found

    Nonlinear magnetic susceptibility and aging phenomena in reentrant ferromagnet: Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Linear and nonlinear dynamic properties of a reentrant ferromagnet Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound are studied using AC and DC magnetic susceptibility. This compound undergoes successive phase transitions at the transition temperatures ThT_{h} (= 16 K), TcT_{c} (= 9.7 K), and TRSGT_{RSG} (= 3.5 K). The static and dynamic behaviors of the reentrant spin glass phase below TRSGT_{RSG} are characterized by those of normal spin glass phase with critical exponent ÎČ\beta = 0.57 ±\pm 0.10, a dynamic critical exponent xx = 8.5 ±\pm 1.8, and an exponent pp (= 1.55 ±\pm 0.13) for the de Almeida -Thouless line. A prominent nonlinear susceptibility is observed between TRSGT_{RSG} and TcT_{c} and around ThT_{h}, suggesting a chaotic nature of the ferromagnetic phase (TRSG≀T≀TcT_{RSG} \leq T \leq T_{c}) and the helical spin ordered phase (Tc≀T≀ThT_{c} \leq T \leq T_{h}). The aging phenomena are observed both in the RSG and FM phases, with the same qualitative features as in normal spin glasses. The aging of zero-field cooled magnetization indicates a drastic change of relaxation mechanism below and above TRSGT_{RSG}. The time dependence of the absorption χâ€Čâ€Č\chi^{\prime \prime} is described by a power law form (≈t−bâ€Čâ€Č\approx t^{-b^{\prime \prime}}) in the ferromagnetic phase, where bâ€Čâ€Č≈0.074±0.016b^{\prime \prime} \approx 0.074 \pm 0.016 at ff = 0.05 Hz and TT = 7 K. No ωt\omega t-scaling law for χâ€Čâ€Č\chi^{\prime \prime} [≈(ωt)−bâ€Čâ€Č\approx (\omega t)^{-b^{\prime \prime}}] is observed.Comment: 14 pages, 16 figures, and 2 table

    Dynamic scaling and aging phenomena in short-range Ising spin glass: Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Static and dynamic behavior of short-range Ising-spin glass Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compounds (GBIC) has been studied with SQUID DC and AC magnetic susceptibility. The TT dependence of the zero-field relaxation time τ\tau above a spin-freezing temperature TgT_{g} (= 3.92 ±\pm 0.11 K) is well described by critical slowing down. The absorption χâ€Čâ€Č\chi^{\prime\prime} below TgT_{g} decreases with increasing angular frequency ω\omega, which is in contrast to the case of 3D Ising spin glass. The dynamic freezing temperature Tf(H,ω)T_{f}(H,\omega) at which dMFC(T,H)/M_{FC}(T,H)/dH=χâ€Č(T,H=0,ω)H=\chi^{\prime}(T,H=0,\omega), is determined as a function of frequency (0.01 Hz ≀ω/2π≀\leq \omega/2\pi \leq 1 kHz) and magnetic field (0 ≀H≀\leq H \leq 5 kOe). The dynamic scaling analysis of the relaxation time τ(T,H)\tau(T,H) defined as τ=1/ω\tau = 1/\omega at T=Tf(H,ω)T = T_{f}(H,\omega) suggests the absence of SG phase in the presence of HH (at least above 100 Oe). Dynamic scaling analysis of χâ€Čâ€Č(T,ω)\chi^{\prime \prime}(T, \omega) and τ(T,H)\tau(T,H) near TgT_{g} leads to the critical exponents (ÎČ\beta = 0.36 ±\pm 0.03, Îł\gamma = 3.5 ±\pm 0.4, Îœ\nu = 1.4 ±\pm 0.2, zz = 6.6 ±\pm 1.2, ψ\psi = 0.24 ±\pm 0.02, and Ξ\theta = 0.13 ±\pm 0.02). The aging phenomenon is studied through the absorption χâ€Čâ€Č(ω,t)\chi^{\prime \prime}(\omega, t) below TgT_{g}. It obeys a (ωt)−bâ€Čâ€Č(\omega t)^{-b^{\prime \prime}} power-law decay with an exponent bâ€Čâ€Č≈0.15−0.2b^{\prime \prime}\approx 0.15 - 0.2. The rejuvenation effect is also observed under sufficiently large (temperature and magnetic-field) perturbations.Comment: 14 pages, 19 figures; to be published in Phys. Rev. B (September 1, 2003

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(Îœe,e−)12N^{12}C(\nu_e,e^-)^{12}N and 12C(ΜΌ,Ό−)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for ΜΌ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×10−40cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×10−40cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to Îœe\nu_{e} coming from the decay-at-rest of ÎŒ+\mu^+ is 16.4×10−42cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure

    Light-Front Quantisation as an Initial-Boundary Value Problem

    Full text link
    In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the problem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using the method of Faddeev and Jackiw for dealing with first-order Lagrangians. For the prototype field theory of massive scalar fields in 1+1 dimensions, we find that initial conditions for fixed light cone time {\sl and} boundary conditions in the spatial variable are sufficient to yield a consistent commutator algebra. Data on a second lightlike hyperplane are not necessary. Hamiltonian and Euler-Lagrange equations of motion become equivalent; the description of the dynamics remains canonical and simple. In this way we justify the approach of discretised light cone quantisation.Comment: 26 pages (including figure), tex, figure in latex, TPR 93-

    Dipolar-controlled spin tunneling and relaxation in molecular magnets

    Full text link
    Spin tunneling in molecular magnets controlled by dipole-dipole interactions (DDI) in the disordered state has been considered numerically on the basis of the microscopic model using the quantum mean-field approximation. In the actual case of a strong DDI spin coherence is completely lost and there is a slow relaxation of magnetization, described by t^{3/4} at short times. Fast precessing nuclear spins, included in the model microscopically, only moderately speed up the relaxation.Comment: 10 pages, 9 figures, to be published in EPJ

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Statistical Outliers and Dragon-Kings as Bose-Condensed Droplets

    Full text link
    A theory of exceptional extreme events, characterized by their abnormal sizes compared with the rest of the distribution, is presented. Such outliers, called "dragon-kings", have been reported in the distribution of financial drawdowns, city-size distributions (e.g., Paris in France and London in the UK), in material failure, epileptic seizure intensities, and other systems. Within our theory, the large outliers are interpreted as droplets of Bose-Einstein condensate: the appearance of outliers is a natural consequence of the occurrence of Bose-Einstein condensation controlled by the relative degree of attraction, or utility, of the largest entities. For large populations, Zipf's law is recovered (except for the dragon-king outliers). The theory thus provides a parsimonious description of the possible coexistence of a power law distribution of event sizes (Zipf's law) and dragon-king outliers.Comment: Latex file, 16 pages, 1 figur

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
    • 

    corecore