205 research outputs found

    In vivo efficacy of XR9051, a potent modulator of P-glycoprotein mediated multidrug resistance

    Get PDF
    Overexpression of P-glycoprotein (P-gp) is a potential cause of multidrug resistance (MDR) in tumours. We have previously reported that XR9051 (N-(4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phenyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-piperazinylidene)methylbenzamide) is a potent and specific inhibitor of P-gp, which reverses drug resistance in several murine and human MDR cell lines. In this study we have evaluated the in vivo efficacy of this novel modulator in a panel of murine and human tumour models and examined its pharmacokinetic profile. Efficacy studies in mice bearing MDR syngeneic tumours (P388/DX Johnson, MC26) or human tumour xenografts (A2780AD, CH1/DOXr, H69/LX) demonstrated that co-administration of XR9051 significantly potentiated the anti-tumour activity of a range of cytotoxic drugs. This modulatory activity was observed following parenteral and oral co-administration of XR9051. In addition, the combination schedules were well-tolerated. Following intravenous administration in mice, XR9051 is rapidly distributed and accumulates in tumours and other tissues. In addition, the compound is well-absorbed after oral administration. These data suggest that XR9051 has the potential for reversing clinical MDR mediated by P-glycoprotien. © 1999 Cancer Research Campaig

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases

    Get PDF
    Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood–brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial‐based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease‐targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial‐mediated treatment of neurological diseases

    Induction of MDR1 gene expression by anthracycline analogues in a human drug resistant leukaemia cell line

    Get PDF
    The effects of 4-demethoxydaunorubicin (idarubicin, IDA) and MX2, a new morpholino-anthracycline, on up-regulation of the MDR1 gene in the low-level multidrug resistant (MDR) cell line CEM/A7R were compared at similar concentrations (IC10, IC50and IC90) over a short time exposure (4 and 24 h). The chemosensitivity of each drug was determined by a 3-day cell growth inhibition assay. Compared with epirubicin (EPI), IDA and MX2 were 17- and eightfold more effective in the CEM/A7R line respectively. No cross-resistance to 5-FU was seen in the CEM/A7R line. Verapamil (5 μM) and PSC 833 (1 μM), which dramatically reversed resistance to EPI in the CEM/A7R line, had no sensitizing effect on the resistance of this line to MX2, but slightly decreased resistance to IDA. The sensitivity to 5-FU was unchanged by these modulators. The induction of MDR1 mRNA expression by IDA, MX2 and 5-FU was analysed by Northern blotting and semiquantitatively assessed by scanning Northern blots on a phosphorimager. The relative level of MDR1 expression was expressed as a ratio of MDR1 mRNA to the internal RNA control glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IDA, MX2 and 5-FU differentially up-regulated MDR1 mRNA in the CEM/A7R line in a dose-dependent manner. Both IDA and MX2 induced MDR1 expression within 4 h. 5-FU up-regulated MDR1 expression only when drug exposure was prolonged to 24 h. Based on MRK 16 binding, flow cytometric analysis of P-glycoprotein (Pgp) expression paralleled the increase in MDR1 mRNA levels. For the three anthracyclines, the increase in MDR1 expression was stable in cells grown in the absence of drug for more than 3 weeks after drug treatment. The induction of MDR1 expression by 5-FU was transient, associated with a rapid decrease in the increased Pgp levels which returned to baseline 72 h after the removal of 5-FU. This study demonstrates that MDR1 expression can be induced by analogues of anthracyclies not pumped by Pgp, and that this induction appears to be stable despite a 3-week drug-free period. © 1999 Cancer Research Campaig

    Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia rhizoxinica </it>is an intracellular symbiont of the phytopathogenic zygomycete <it>Rhizopus microsporus</it>, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of <it>B. rhizoxinica </it>HKI 0454 - a type strain of endofungal <it>Burkholderia </it>species.</p> <p>Results</p> <p>The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living <it>Burkholderia </it>species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, <it>B. rhizoxinica </it>lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.</p> <p>Conclusions</p> <p><it>B. rhizoxinica </it>is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that <it>B. rhizoxinica </it>is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. <it>In silico </it>analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.</p
    corecore