1,625 research outputs found

    Logarithmic rate dependence in deforming granular materials

    Full text link
    Rate-independence for stresses within a granular material is a basic tenet of many models for slow dense granular flows. By contrast, logarithmic rate dependence of stresses is found in solid-on-solid friction, in geological settings, and elsewhere. In this work, we show that logarithmic rate-dependence occurs in granular materials for plastic (irreversible) deformations that occur during shearing but not for elastic (reversible) deformations, such as those that occur under moderate repetitive compression. Increasing the shearing rate, \Omega, leads to an increase in the stress and the stress fluctuations that at least qualitatively resemble what occurs due to an increase in the density. Increases in \Omega also lead to qualitative changes in the distributions of stress build-up and relaxation events. If shearing is stopped at t=0, stress relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This collective relaxation of the stress network over logarithmically long times provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX

    Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption

    Full text link
    Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky Way. It became the second-brightest star in the sky during its mid-19th century "Great Eruption," but then faded from view (with only naked-eye estimates of brightness). Its eruption is unique among known astronomical transients in that it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3 kpc away, spatially resolved studies of the nebula have constrained the ejected mass and velocity, indicating that in its 19th century eruption, Eta Car ejected more than 10 M_solar in an event that had 10% of the energy of a typical core-collapse supernova without destroying the star. Here we report the discovery of light echoes of Eta Carinae which appear to be from the 1838-1858 Great Eruption. Spectra of these light echoes show only absorption lines, which are blueshifted by -210 km/s, in good agreement with predicted expansion speeds. The light-echo spectra correlate best with those of G2-G5 supergiant spectra, which have effective temperatures of ~5000 K. In contrast to the class of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption, the effective temperature of its outburst is significantly cooler than allowed by standard opaque wind models. This indicates that other physical mechanisms like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages, 3 figures, 5 table

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    Full text link
    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    A seven-planet resonant chain in TRAPPIST-1

    Get PDF
    The TRAPPIST-1 system is the first transiting planet system found orbiting an ultra-cool dwarf star1. At least seven planets similar to Earth in radius were previously found to transit this host star2. Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 d orbital period for the outermost transiting planet, TRAPPIST-1h, which was unconstrained until now. This value matches our theoretical expectations based on Laplace relations3 and places TRAPPIST-1h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1h has a radius of 0.727 R⊕ and an equilibrium temperature of 169 K. We have also measured the rotational period of the star at 3.3 d and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf

    Observational and Physical Classification of Supernovae

    Full text link
    This chapter describes the current classification scheme of supernovae (SNe). This scheme has evolved over many decades and now includes numerous SN Types and sub-types. Many of these are universally recognized, while there are controversies regarding the definitions, membership and even the names of some sub-classes; we will try to review here the commonly-used nomenclature, noting the main variants when possible. SN Types are defined according to observational properties; mostly visible-light spectra near maximum light, as well as according to their photometric properties. However, a long-term goal of SN classification is to associate observationally-defined classes with specific physical explosive phenomena. We show here that this aspiration is now finally coming to fruition, and we establish the SN classification scheme upon direct observational evidence connecting SN groups with specific progenitor stars. Observationally, the broad class of Type II SNe contains objects showing strong spectroscopic signatures of hydrogen, while objects lacking such signatures are of Type I, which is further divided to numerous subclasses. Recently a class of super-luminous SNe (SLSNe, typically 10 times more luminous than standard events) has been identified, and it is discussed. We end this chapter by briefly describing a proposed alternative classification scheme that is inspired by the stellar classification system. This system presents our emerging physical understanding of SN explosions, while clearly separating robust observational properties from physical inferences that can be debated. This new system is quantitative, and naturally deals with events distributed along a continuum, rather than being strictly divided into discrete classes. Thus, it may be more suitable to the coming era where SN numbers will quickly expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most welcom
    corecore