163 research outputs found

    Use NU-WRF and GCE Model to Simulate the Precipitation Processes During MC3E Campaign

    Get PDF
    One of major CRM approaches to studying precipitation processes is sometimes referred to as "cloud ensemble modeling". This approach allows many clouds of various sizes and stages of their lifecycles to be present at any given simulation time. Large-scale effects derived from observations are imposed into CRMs as forcing, and cyclic lateral boundaries are used. The advantage of this approach is that model results in terms of rainfall and QI and Q2 usually are in good agreement with observations. In addition, the model results provide cloud statistics that represent different types of clouds/cloud systems during their lifetime (life cycle). The large-scale forcing derived from MC3EI will be used to drive GCE model simulations. The model-simulated results will be compared with observations from MC3E. These GCE model-simulated datasets are especially valuable for LH algorithm developers. In addition, the regional scale model with very high-resolution, NASA Unified WRF is also used to real time forecast during the MC3E campaign to ensure that the precipitation and other meteorological forecasts are available to the flight planning team and to interpret the forecast results in terms of proposed flight scenarios. Post Mission simulations are conducted to examine the sensitivity of initial and lateral boundary conditions to cloud and precipitation processes and rainfall. We will compare model results in terms of precipitation and surface rainfall using GCE model and NU-WR

    Synergistic treatment of osteosarcoma with biomimetic nanoparticles transporting doxorubicin and siRNA

    Get PDF
    IntroductionOsteosarcoma tumors are the most common malignant bone tumors in children and adolescents. Their treatment usually requires surgical removal of all detectable cancerous tissue and multidrug chemotherapy; however, the prognosis for patients with unresectable or recurrent osteosarcoma is unfavorable. To make chemotherapy safer and more effective for osteosarcoma patients, biomimetic nanoparticles (NPs) camouflaged by mesenchymal stem cell membranes (MSCMs) were synthesized to induce osteosarcoma cell apoptosis by co-delivering the anticancer drug doxorubicin hydrochloride(DOX) and a small interfering RNA (siRNA). Importantly, these NPs have high biocompatibility and tumor-homing ability. This study aimed to improve the efficacy of osteosarcoma therapy by using the synergistic combination of DOX and an siRNA targeting the apoptosis suppressor gene survivin.MethodsBiomimetic NPs (DOX/siSUR-PLGA@MSCM NPs) were synthesized by coloading DOX and survivin siRNA (siSUR) into poly (lactide-co-glycolide acid) (PLGA) via a double-emulsion solvent evaporation method. The NPs were camouflaged by MSCMs to deliver both DOX and survivin-targeting siRNA and characterized and evaluated in terms of cellular uptake, in vitro release, in vitro and in vivo antitumor effects, and biosafety.ResultsDOX/siSUR-PLGA@MSCM NPs had good tumor-homing ability due to the MSCMs modification. The drug-laden biomimetic NPs had good antitumor effects in homozygous MG63 tumor-bearing mice due to the synergistic effect of the drug combination.ConclusionDOX/siSUR-PLGA@MSCM NPs can show improved therapeutic effects in osteosarcoma patients due to the combination of a chemotherapeutic drug and gene therapy based on their good tumor targeting and biosafety

    A Contribution by Ice Nuclei to Global Warming

    Get PDF
    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy

    Get PDF
    Acknowledgments This work was partially supported by grants from the National Key R&D Program of China (2020YFA0908800), NSFC (82111530209, 81773674, 91959103, 81573383, 21763002), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Hubei Province Scientific and Technical Innovation Key Project (2020BAB058), the Local Development Funds of Science and Technology Department of Tibet (XZ202102YD0033C, XZ202001YD0028C), and the Fundamental Research Funds for the Central Universities.Peer reviewedPublisher PD

    The Goddard Cumulus Ensemble Model (GCE): Improvements and Applications for Studying Precipitation Processes

    Get PDF
    Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on precipitation processes, utilizing a satellite simulator to improve the microphysics, providing better simulations for satellite-derived latent heating retrieval, and coupling with a general circulation model to improve the representation of precipitation processes

    Effectiveness of intravenous r-tPA versus UK for acute ischaemic stroke: a nationwide prospective Chinese registry study

    Get PDF
    BACKGROUND Intravenous recombinant tissue plasminogen activator (r-tPA) and urokinase (UK) are both recommended for the treatment of acute ischaemic stroke (AIS) in China, but with few comparative outcome data being available. We aimed to compare the outcomes of these two thrombolytic agents for the treatment of patients within 4.5 hours of onset of AIS in routine clinical practice in China. METHODS A pre-planned, prospective, nationwide, multicentre, real-world registry of consecutive patients with AIS (age ≥18 years) who received r-tPA or UK within 4.5 hours of symptom onset according to local decision-making and guideline recommendations during 2017-2019. The primary effectiveness outcome was the proportion of patients with an excellent functional outcome (defined by modified Rankin scale scores 0 to 1) at 90 days. The key safety endpoint was symptomatic intracranial haemorrhage according to standard definitions. Multivariable logistic regression was used for comparative analysis, with adjustment according to propensity scores to ensure balance in baseline characteristics. RESULTS Overall, 4130 patients with AIS were registered but 320 had incomplete or missing data, leaving 3810 with available data for analysis of whom 2666 received r-tPA (median dose 0.88 (IQR 0.78-0.90) mg/kg) and 1144 received UK (1.71 (1.43-2.00)×10 international unit per kilogram). There were several significant intergroup differences in patient characteristics: r-tPA patients were more educated, had less history of stroke, lower systolic blood pressure, greater neurological impairment and shorter treatment times from symptom onset than UK patients. However, in adjusted analysis, the frequency of excellent outcome (OR 1.18, 95% CI 1.00 to 1.40, p=0.052) and symptomatic intracranial haemorrhage (OR 0.70, 95% CI 0.33 to 1.47, p=0.344) were similar between groups. CONCLUSIONS UK may be as effective and carry a similar safety profile as r-tPA in treating mild to moderate AIS within guidelines in China. REGISTRATION: http://www.clinicaltrials.gov. unique identifier: NCT02854592

    Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

    Get PDF
    Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore