45 research outputs found
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
We present elemental, lipid biomarker and, in the supplement, compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmen- tal change of at least 1.2 million years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terres- trial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distri- butions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α, ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their av- erage chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognisable in the carbonate and organic carbon records of Lake Ohrid sed- iments. Our new proxies indicate biome modification in re- sponse to hydrological changes, identifying two phases of in- creased soil organic matter (OM) supply, first from soils with moderately degraded OM and then from more degraded soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical
A 27cal ka biomarker-based record of ecosystem changes from lacustrine sediments of the Chihuahua Desert of Mexico
Hydroclimate variation of the northwest Mexico during the late Pleistocene and Holocene is an active area of debate, with uncertainty in the nature and sources of precipitation. Previous research has inferred the influences of winter storms, summer monsoonal rain and autumn tropical cyclones. The impacts on regional and local ecosystems, however, are not well constrained. Here, we investigate the response of lacustrine and terrestrial habitats of the Santiaguillo Basin in the Chihuahua Desert (Mexico) to hydrological changes occurring since the late last glacial. Biomarkers from the sediments reflect variable input of organic matter (OM) from algal and bacterial biomass, aquatic microfauna and surrounding vegetation, revealing distinct stages of ecosystem adaption over the last 27 cal ka. Based on previously published and new data, we show that a perennial productive lake was present during the late glacial and it persisted until 17.5 cal ka BP. Coinciding with Heinrich event 1, OM supply from deteriorating wetland soils may have been caused by early dry conditions. Further phases of increasing aridity and a shrinking water body drove changing OM quality and biomarker composition during the early and mid-Holocene. A pronounced shift in biomarker distributions at 4 cal ka BP suggests that the supply of plant litter from resinous trees and grasses increased, likely reflecting the establishment of modern vegetation. Our results illustrate the potential of biomarker applications in the area, adding to the evidence of hydroclimate variability and enabling reconstructions of local ecosystem dynamics
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Our study aims to reconstruct climate changes that occurred at Lake Ohrid
(south-western Balkan Peninsula), the oldest extant lake in Europe, between
160 and 70 ka (covering part of marine isotope stage 6, MIS 6; all of MIS 5;
and the beginning of MIS 4). A multi-method approach, including the “Modern
Analog Technique” and the “Weighted Averaging Partial Least-Squares Regression”, is
applied to the high-resolution pollen sequence of the DEEP site, collected
from the central part of Lake Ohrid, to provide quantitative estimates of
climate and bioclimate parameters. This allows us to document climatic change
during the key periods of MIS 6 and MIS 5 in southern Europe, a region where
accurate climate reconstructions are still lacking for this time interval.
Our results for the penultimate glacial show cold and dry conditions, while the onset of
the “last interglacial” is characterized by wet and warm conditions, with temperatures
higher than today (by ca. 2 ∘C). The Eemian also shows the well-known climatic
tri-partition in the Balkans, with an initial pre-temperate phase of abrupt warming
(128–121 ka), a central temperate phase with decreasing temperatures associated with
wet conditions (121–118 ka), followed by a post-temperate phase of progressive change
towards cold and dry conditions (118–112 ka).
After the Eemian, an alternation of four warm/wet periods with cold/dry
ones, likely related to the succession of Greenland stadials and cold events
known from the North Atlantic, occurred. The observed pattern is also
consistent with hydrological and isotopic data from the central
Mediterranean.
The Lake Ohrid climate reconstruction shows greater similarity with climate
patterns inferred from northern European pollen records than with southern
European ones, which is probably due to its intermediate position and the
mountainous setting. However, this hypothesis needs further testing as very
few climate reconstructions are available for southern Europe for this key
time period.</p
The paleolimnologist's guide to compound-specific stable isotope analysis - An introduction to principles and applications of CSIA for quaternary lake sediments
The stable isotope composition of key chemical elements for life on Earth (e.g., carbon, hydrogen, nitrogen, oxygen, sulfur) tracks changes in fluxes and turnover of these elements in the biogeosphere. Over the past 15-20 years, the potential to measure these isotopic compositions for individual, source-specific organic molecules (biomarkers) and to link them to a range of environmental conditions and processes has been unlocked and amplified by increasingly sensitive, affordable and wide-spread analytical technology. Paleoenvironmental research has seen enormous step-changes in our understanding of past ecosystem dynamics. Vital to these paradigm shifts is the need for well-constrained modern and recent analogues. Through increased understanding of these environments and their biological pathways we can successfully unravel past climatic changes and associated ecosystem adaption.
With this review, we aim to introduce scientists working in the field of Quaternary paleolimnology to the tools that compound-specific isotope analysis (CSIA) provides for the gain of information on biogeochemical conditions in ancient environments. We provide information on fundamental principles and applications of novel and established CSIA applications based on the carbon, hydrogen, nitrogen, oxygen and sulfur isotopic composition of biomarkers. While biosynthesis, sources and associated isotope fractionation patterns of compounds such as n-alkanes are relatively well-constrained, new applications emerge from the increasing use of functionalized alkyl lipids, steroids, hopanoids, isoprenoids, GDGTs, pigments or cellulose. Biosynthesis and fractionation are not always fully understood
On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2009, doi:10.1029/2004PA001081.The bulk sedimentary nitrogen isotopic composition of two cores from nearby sites on the northern slope of the South China Sea (Site 17940 and Ocean Drilling Program (ODP) Site 1144) differs by up to >2‰ during the last glacial period. Given their close proximity, both core sites are located in the same biogeographic zone and nutrient regime, and it is thus unlikely that this offset is due to a true gradient in surface ocean conditions. In an attempt to resolve this offset, we have investigated the possible effects of two sedimentological parameters that can affect bulk sedimentary δ15N, namely, the variable contribution of inorganic N to bulk N in the sediment and the grain-size dependence of bulk δ15N. We find that neither effect, singly or in combination, is sufficient to explain the significant δ15N offset between the two down-core records. By elimination the most likely explanation for the observed discrepancy is a different origin of both the organic and inorganic nitrogen at each site. This study adds to the growing body of evidence highlighting the complex nature and origin of the sedimentary components in sediment drifts, such as ODP Site 1144.Funding from NSERC Canada (to S.E.C. and M.K.) and NSF
(OCE-0214365 and OCE-0318371 to M.J.H. and OCE-0327405 to T.I.E.)
is gratefully acknowledged, as well as Woods Hole Oceanographic Institution
Postdoctoral Fellowships (M.K. and G.M.), the Camille and Henry
Dreyfus Postdoctoral Program in Environmental Chemistry (M.J.H.), and a
Geological Society of America student research grant (M.K.)
Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem
The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems
The impact of COVID-19 on the management of European protected areas and policy implications
The COVID-19 pandemic led to many European countries imposing lockdown measures and limiting people’s movement during spring 2020. During the summer 2020, these strict lockdown measures were gradually lifted while in autumn 2020, local restrictions started to be re-introduced as a second wave emerged. After initial restrictions on visitors accessing many Nature Protected Areas (PAs) in Europe, management authorities have had to introduce measures so that all users can safely visit these protected landscapes. In this paper, we examine the challenges that emerged due to COVID-19 for PAs and their deeper causes. By considering the impact on and response of 14 popular European National and Nature Parks, we propose tentative longer-term solutions going beyond the current short-term measures that have been implemented. The most important challenges identified in our study were overcrowding, a new profile of visitors, problematic behavior, and conflicts between different user groups. A number of new measures have been introduced to tackle these challenges including information campaigns, traffic management, and establishing one-way systems on trail paths. However, measures to safeguard public health are often in conflict with other PA management measures aiming to minimize disturbance of wildlife and ecosystems. We highlight three areas in which management of PAs can learn from the experience of this pandemic: managing visitor numbers in order to avoid overcrowding through careful spatial planning, introducing educational campaigns, particularly targeting a new profile of visitors, and promoting sustainable tourism models, which do not rely on large visitor numbers.European Research Council (ERC) under the European Union’s Horizon 2020 research programme (Project FIDELIO, grant agreement no. 802605)
Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach
Scientific drilling projects in ancient lakes: integrating geological and biological histories
Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information, e.g., through molecular dating of molecular phylogenies. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets for creating an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep drilling projects
Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years
Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance