146 research outputs found

    Doctor of Engineering internship at the U.S. Army Engineer Waterways Experiment Station: an internship report

    Get PDF
    "Submitted to the College of Engineering of Texas A&M University in partial fulfillment of the requirement for the degree of Doctor of Engineering.

    Dose-Levels and First Signs of Efficacy in Contemporary Oncology Phase 1 Clinical Trials

    Get PDF
    PURPOSE: Phase 1 trials play a crucial role in oncology by translating laboratory science into efficient therapies. Molecular targeted agents (MTA) differ from traditional cytotoxics in terms of both efficacy and toxicity profiles. Recent reports suggest that higher doses are not essential to produce the optimal anti-tumor effect. This study aimed to assess if MTA could achieve clinical benefit at much lower dose than traditional cytotoxics in dose seeking phase 1 trials. PATIENTS AND METHODS: We reviewed 317 recent phase 1 oncology trials reported in the literature between January 1997 and January 2009. First sign of efficacy, maximum tolerated dose (MTD) and their associated dose level were recorded in each trial. RESULTS: Trials investigating conventional cytotoxics alone, MTA alone and combination of both represented respectively 63.0% (201/317), 23.3% (74/317) and 13.7% (42/317) of all trials. The MTD was reached in 65.9% (209/317) of all trials and was mostly observed at the fifth dose level. First sign of efficacy was less frequently observed at the first three dose-levels for MTA as compared to conventional cytotoxics or combinations regimens (48.3% versus 63.2% and 61.3%). Sign of efficacy was observed in the same proportion whatever the treatment type (73-82%). MTD was less frequently established in trials investigating MTA alone (51.3%) or combinations (42.8%) as compared to conventional cytotoxic agents (75.6%). CONCLUSION: First sign of efficacy was less frequently reported at the early dose-levels and MTD was less frequently reached in trials investigating molecular targeted therapy alone. Similar proportion of trials reported clinical benefit

    Tissue level, activation and cellular localisation of TGF-β1 and association with survival in gastric cancer patients

    Get PDF
    Transforming growth factor-β1 (TGF-β1), a tumour suppressing as well as tumour-promoting cytokine, is stored as an extracellular matrix-bound latent complex. We examined TGF-β1 activation and localisation of TGF-β1 activity in gastric cancer. Gastric tumours showed increased stromal and epithelial total TGF-β1 staining by immunohistochemistry. Active TGF-β1 was present in malignant epithelial cells, but most strongly in smooth muscle actin expressing fibroblasts. Normal gastric mucosa from the same patient showed some staining for total, and little for active TGF-β1. Active TGF-β1 levels were determined by ELISA on tissue homogenates, confirming a strong increase in active TGF-β1 in tumours compared to corresponding normal mucosa. Moreover, high tumour TGF-β1 activity levels were significantly associated with clinical parameters, including worse survival of the patients. Total and active TGF-β1 levels were not correlated, suggesting a specific activation process. Of the different proteases tested, active TGF-β1 levels were only correlated with urokinase activity levels. The correlation with urokinase activity suggests a role for plasmin in TGF-β1 activation in the tumour microenvironment, resulting in transformation of resident fibroblasts to tumour promoting myofibroblasts. In conclusion we have shown localisation and clinical relevance of TGF-β1 activity levels in gastric cancer

    Heavy Ion Carcinogenesis and Human Space Exploration

    Get PDF
    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Mechanical stability of the CMS strip tracker measured with a laser alignment system

    Get PDF
    Peer reviewe

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Bush the transnationalist: a reappraisal of the unilateralist impulse in US foreign policy, 2001-2009

    Get PDF
    This article challenges the common characterisation of George W. Bush’s foreign policy as “unilateral.” It argues that the Bush administration developed a new post-9/11 understanding of terrorism as a transnational, networked phenomenon shaped by the forces of globalisation. This led to a new strategic emphasis on bi- and multilateral security co-operation and counterterrorism operations, especially outside of Afghanistan and Iraq, driven by the perceived need to counter a transnational security challenge present in multiple locations. This (flawed) attempt to engage with transnational security challenges supplemented the existing internationalist pillar of the Bush administration’s foreign policy. Highlighting the transnational realm of international relations and the ways in which the Bush administration was able to co-opt other states to tackle perceived transnational challenges also shows the high importance the administration attached to concerted action even as it frequented eschewed institutional multilateralism
    corecore