2,778 research outputs found

    A population-based approach to background discrimination in particle physics

    Full text link
    Background properties in experimental particle physics are typically estimated using control samples corresponding to large numbers of events. This can provide precise knowledge of average background distributions, but typically does not consider the effect of fluctuations in a data set of interest. A novel approach based on mixture model decomposition is presented as a way to estimate the effect of fluctuations on the shapes of probability distributions in a given data set, with a view to improving on the knowledge of background distributions obtained from control samples. Events are treated as heterogeneous populations comprising particles originating from different processes, and individual particles are mapped to a process of interest on a probabilistic basis. The proposed approach makes it possible to extract from the data information about the effect of fluctuations that would otherwise be lost using traditional methods based on high-statistics control samples. A feasibility study on Monte Carlo is presented, together with a comparison with existing techniques. Finally, the prospects for the development of tools for intensive offline analysis of individual events at the Large Hadron Collider are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser. Minor changes have been made to the text with respect to the published article with a view to improving readabilit

    A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK

    Averages of b-hadron Properties at the End of 2005

    Get PDF
    This article reports world averages for measurements on b-hadron properties obtained by the Heavy Flavor Averaging Group (HFAG) using the available results as of at the end of 2005. In the averaging, the input parameters used in the various analyses are adjusted (rescaled) to common values, and all known correlations are taken into account. The averages include lifetimes, neutral meson mixing parameters, parameters of semileptonic decays, branching fractions of B meson decays to final states with open charm, charmonium and no charm, and measurements related to CP asymmetries

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    The Discrepancy Between tau and e+e- Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly

    Full text link
    We revisit the procedure for comparing the pi pi spectral function measured in tau decays to that obtained in e+e- annihilation. We re-examine the isospin-breaking corrections using new experimental and theoretical input, and find improved agreement between the tau- --> pi- pi0 nu_tau branching fraction measurement and its prediction using the isospin-breaking-corrected e+e- --> pi+pi- spectral function, though not resolving all discrepancies. We recompute the lowest order hadronic contributions to the muon g-2 using e+e- and tau data with the new corrections, and find a reduced difference between the two evaluations. The new tau-based estimate of the muon magnetic anomaly is found to be 1.9 standard deviations lower than the direct measurement.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J. C; (v2): Revised version with improved and uniform treatment of tau and e+e- data with HVPTools and a few minor bug fixes; (v3): Final version accepted for publicatio

    Measurement of the semileptonic charge asymmetry in B0 meson mixing with the D0 detector

    Get PDF
    We present a measurement of the semileptonic mixing asymmetry for B0 mesons, a^d_{sl}, using two independent decay channels: B0 -> mu+D-X, with D- -> K+pi-pi-; and B0 -> mu+D*-X, with D*- -> antiD0 pi-, antiD0 -> K+pi- (and charge conjugate processes). We use a data sample corresponding to 10.4 fb^{-1} of ppbar collisions at sqrt(s) = 1.96 TeV, collected with the D0 experiment at the Fermilab Tevatron collider. We extract the charge asymmetries in these two channels as a function of the visible proper decay length (VPDL) of the B0 meson, correct for detector-related asymmetries using data-driven methods, and account for dilution from charge-symmetric processes using Monte Carlo simulation. The final measurement combines four signal VPDL regions for each channel, yielding a^d_{sl} = [0.68 \pm 0.45 \text{(stat.)} \pm 0.14 \text{(syst.)}]%. This is the single most precise measurement of this parameter, with uncertainties smaller than the current world average of B factory measurements.Comment: Version includes minor textual changes following peer review by journal, most notably the updating of Ref. [21] to reflect the most recent publicatio

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore