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Abstract. Variations of k-d trees represent a fundamental data structure used in
Computational Geometry with numerous applications in science. For example particle track
fitting in the software of the LHC experiments, and in simulations of N-body systems in the
study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in
biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and
the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d
trees to reduce the computation time upper bounds to O(n logn) and even O(n) from O(n2).
We present an algorithm that uses the principle of well-separated pairs decomposition to always
produce compressed trees in O(n logn) work. We present and evaluate parallel implementations
for the algorithm that can take advantage of multi-core architectures.

1. Introduction
Given a set P of n points in Rd, consider the following problems of: finding the two closest
points to each other belonging to P ; for each q ∈ P , finding its closest neighbour in P − q; and
finding all k nearest neighbours of each q ∈ P .

Efficient Algorithms to solve these three problems are fundamental in areas like
Computational Geometry, Machine Learning, or simulations and multivariate analysis in High
Energy Physics, for example. They can all be solved sequentially within O(n log n) work ([1]
and [2]). In this paper, we deal with how to solve them in parallel architectures, preserving the
work boundary, but with algorithms that scale with the number of available processors.

In particular, the classical solution for the closest pair problem can throw light into the
approach taken. The problem can be solved in O(dn2) time by computing all distances between
all pairs of points and selecting the smallest. The standard textbook [3] solution when d = 2
consists in partitioning the initial set P into subsets PL and PR, and then computing:

• the closest pair for PL;

• the closest pair for PR;

• the closest pair (p, q) under the following restrictions: p ∈ PL, and q ∈ PR, and both p and
q must lie within distance δ of the line separating PL from PR, where δ is the minimum of
the distances for the pairs computed in the previous steps.

The closest pair is then selected from the three pairs computed above.
Essential to this solution is the divide-and-conquer nature of the process which leads to a

O(n log n) time when the initial partition gives sets PL and PR with roughly the same number
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of points. In addition, the recursion implied builds a tree that when explicitly constructed can
be used to provide a straightforward and efficient solution for the problem of finding the closest
neighbour to each point q ∈ P , achieved by a procedure that for each q computes in O(log n)
its nearest neighbour (the nearest port-office problem in [4]).

Vaidya [5] first showed that if the set of all pairs of subsets found in a tree structure as
mentioned above is computed, then the problem of finding all k nearest neighbours for all points
in P can also be solved within O(n log n) time.

The main target of this paper is to describe parallel algorithms that can be used to build the
tree structure implicit in the recursion implicit in the solution of the closest pair above. We will
show performance results for the implementation on multi-core machines.

2. K-ary trees
Organising multidimensional point data is a central issue in computer graphics, image processing,
computer geometry, to name just a few. A point in this context is a meaningful set of attributes
from possibly different domains. Organizing means finding an effective representation that can
help with solving efficiently, for example, search questions like those introduced in section 1.
The structures involved in such organisation lead invariably to k-ary trees and search, k being
equal to 2d, where d is the number of attributes in each point, i.e., the number of dimensions of
the space considered.

In the context of organising points in 2 dimensions, Finkel and Bentley [6] introduced the
quad tree. A quad tree applies the idea of divide-and-conquer to each of the two attributes of
a point. It imposes a grid-like structure on the region of space defined by the two-dimensional
collection of the points in question. It is a tree structure where each node identifies one of the
points as a discriminator to partition a set of points in exactly four quadrants. In this sense, it
applies a parallel comparison over all, in this case two, attributes of the points.

Samet [1] identifies this property of comparing all attributes of each point as an advantage
in a multiprocessing environment. On the other hand, this same property is at root of the
difficulties in using them. First, a quad tree node can have up to three null descendants, as
opposed to a binary that would have only one. This adds space cost. Also, a quad tree node
uses more space than a binary tree node. In addition, extensions of quad trees to three or more
dimensions add to these costs due to what Moore in [7] identified as the curse of dimensionality,
a fast increasing number of empty regions (descendant nodes) growing with the dimensionality.
Last, the recursive nature inherent to any tree structure becomes more complicated when the
number of dimensions increases and creates serious difficulties with splitting and balancing work
among processors in the case of parallel processing.

Introduced by Bentley in [8], k-d trees use a representation that very much mirrors that of
a binary tree. Each node partitions a set of points on one attribute. On a path from root
to leaf, the nodes cycle through the attributes (dimensions) used to partition the set of points.
Associated with a node is a dimension and a point of partition. In Bentley’s proposal for both the
quad tree and the k-d tree, the point used for partitioning comes from the set being partitioned.
An immediate advantage of the k-d tree is that simplicity of its nodes makes it suitable for
ease organisation of points in more than two dimensions. Also unbalancing and waste of space
due to empty regions in partitions could be less accentuated than with quad trees. Potentially,
the sequential nature of comparison of attributes for one given point might be a hindrance for
parallel construction, as pointed out by Samet [1].

Cycling through the dimensions, as proposed by Bentley, can lead to unnecessarily unbalanced
trees with consequent waste in space and time in the construction and search procedures. Moore
[7] and Omohundro [9] show extensive quantitative studies of k-d trees to identify situations that
can lead to unbalanced trees. In the next section, a variation of k-d trees is introduced to exploit
parallelism in construction while keeping the height of the trees inside O(log n).

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052011 doi:10.1088/1742-6596/513/5/052011

2



3. Fair split and k-d trees
In this section and the ones that follow, k-d trees are the data structure considered for organising
multidimensional data. A k-d tree is viewed essentially as binary search tree, with one added
discriminator per node, which identifies the dimension over which the node partitions the region
of space being considered.

A k-d tree can be stated by an inductive definition.

Definition 1 A k-d tree over τd is an inductive type which is either

• a leaf containing just one element (point) of type τ ;

• or it is a node composed of

– a discriminator, which defines the dimension of split;
– a cut value of type τ , which defines the value used to to split;
– a left k-d tree over τ ;
– a right k-d tree over τ .

Given a tree t following such inductive definition, it is required that two invariants hold:

• Any point in its left tree must have a value on the dimension defined by the discriminator
of t less than the cut value of t.

• Any point in its right tree must have a value on the dimension defined by the discriminator
of t greater than the cut value of t.

This is essentially Bentley’s definition of a k-d tree. However, two important alterations are
introduced:

• A node does not necessarily use a point of a set being partitioned as a split point. Any
value will do, if it partitions the set in balanced way.

• Bentley recommends that the discriminators used in each a node should cycle through the
dimensions of the set being indexed. In this work, the discriminator used in each node is
chosen so that it will produce a balanced split.

The following considerations should be taken into account to build the trees following the
definition above:

• The height of the final tree should be kept within O(log n), when the initial set has n points.

• The splitting procedure used to construct each node and the recursive procedure used to
build the tree should always maximise the usage of the parallel computational resources
available.

Vaidya in [5] and Callahan in [10] use the idea of splitting to produce a well separated pairs
of subsets of initial set of points. Callahan introduces a concept of a fair split. The set of points
being partitioned by a node defines a range in the dimension of the split. The cut value of split
should divide the range close to half.

Callahan introduces both sequential and parallel k-d trees. The sequential algorithm is based
on what Bentley called ”burning the candle from both ends” in his algorithm for in situ partition
of the Quicksort [11]. Callahan’s sequential algorithm works with sorted versions of the set of
points: one sorted version for each dimension. The algorithm searches for a split from left to
right and right to left. The algorithm also adds intermediate sequences to add the split and
pointers from and to the original sequence.

Callahan’s method is essentially sequential. To add parallelism, Callahan adds a step where
processors must guess candidate slabs for partitioning the set in each node, a process not easily
realizable in practice and whose correctness is discussed in a trivial way by Callahan. In addition,
it is not clear that the recursive construction leads to balanced work distribution.
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kdtree P =
i f s i n g l e t o n P
then Leaf P
else

let ( cutdim , cutval , l p t s , rp t s ) = sp l i t P
in Node cutdim c t v a l ( kdtree l p t s ) ( kdtree rp t s )

Figure 1. Recursive algorithm to build a k-d tree

4. Split by the median
Figure 1 shows a recursive algorithm for building a k-d tree on a set P of points. It is a classical
recursion over the inductive definition of the k-d tree: when P has just one point, a leaf is
returned; otherwise, a split is applied to produce a cutting discriminator (dimension) and value,
a set of points that will live in the left subtree and a set of points that will go into the right
subtree. Its realisation as a parallel algorithm demands:

• a parallel splitting process;

• unfolding of the recursive calls to avoid stages with idle processors;

• balancing the work load of the left and right trees construction.

4.1. Parallel splitting
Partitioning a set of points involves two decisions that can affect the height of the tree and load
balance in a parallel environment: choice of the splitting dimension, and choice of the cut value
or splitter.

Bentley’s algorithm [8] cycles over the dimensions of the points to choose the splitting
discriminator for each node. However, it is easy to show that cyclical choice of splitting dimension
can contributing to an increased height of the tree: for example, if the points have a very
narrow range for one or more dimensions. Moore [7], studying the use of k-d trees in processing
neighbourhood search queries for robotic vision, shows interesting distributions where a cyclical
choice of discriminators would have a negative effect on tree height search and build time. An
example is the case where points are mostly distributed over the perimeter of an ellipse or circle.
Experimental evidence collected by Omohundro [9] studying the behaviour of neural networks
also points against the usage of cyclical choice of discriminators. It is not difficult to see, on
the other hand, that splitting the dimension with widest range will in general contribute to
balancing the tree. In this work the splitting dimension is always chosen as the one with widest
range. The splitter in that dimension is chosen by either splitting close to the middle of the
range or the median of the points’ values in the chosen dimension.

Segdewick [12] shows a probabilistic study for Quicksort that favours the use of a median for
splitting pivot choice. There are two options when choosing the splitter by the median: using
Sedegwick’s option of taking a median of three elements, or applying a deterministic efficient
algorithm for median computation.

The algorithm published by Blum et al. in [13] has several interesting properties: it is a
deterministic algorithm for selecting the kth element of a sequence; a parallel version can be
easily obtained; it can be adapted to produce multiple splitters in one sweep. The algorithm is
essentially composed of the following steps:

(i) Group the sequence in blocks of 5 and find the median for each group.

(ii) Apply recursion to find p, the median of the medians,
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(iii) Use p to split the partition the sequence and use recursion on the appropriate subsequence
to find the median (or the kth element).

The algorithm runs in O(n) time when one processor is used. The first two steps almost
invite parallelism to produce an algorithm that runs with O(n) work with p processors. Those
two steps produce a splitter that is good enough to keep the height of the tree within O(log n):
the element yielded by them will always be greater than 3n/10 and less than 7n/10 elements of
a given n elements sequence.

The last step in the split is moving the points themselves around the identified pivot. These
is a problem that can be easily solved by a combination of a parallel map, that would identify
where each points belongs, followed by a gather operation [14] or a sequence of two or more (in
the case of a multi-way split) pack operations (compress in [15] and [16]).

4.2. Delayed node construction
The split function in algorithm 1 can now be completely parallel if decomposed in the following
synchronous steps:

(i) in parallel find the dimension of split;

(ii) in parallel find the cut value;

(iii) in parallel move points to their destination partition.

The final hurdle in obtaining a parallel k-d tree construction is in the recursive step of the
algorithm 1. A tail recursive algorithm could be easily converted to loop by hand or even by
compilers of languages like LISP, or Haskell. As it stands, each call to build a Node has to be
delayed to be fulfilled only after the two recursive calls to k-d tree are completed. The 2011
standard of C++ offers an elegant solution for that in the form of delayed computation through
futures. Elegant as they may seem, they will still contribute to a general difficulty in work
balance. An alternative approach is to make explicit both the stack of the recursive calls and
the delayed computations, and produce a tail recursive descent through the tree.

The recursive descent through the tree will be traced by bookkeeping of:

• A list of subsets of points that are waiting to be partitioned. Each subset should be tagged
with its parent node and the position where it belongs in that node.

• A list of delayed parent nodes: a parent node can be released from the delayed list when
both its left and right children have been split and made into nodes.

In this frame, a parallel split applied to a large set of points produces:

• A delayed node, that will have to be updated with pointers to left and right children, when
these are available.

• Two new sets of points that will go into the right and left children. These two sets of points
will be tagged as belonging to left or right branches and will know their parent node.

Delayed nodes are promises of nodes that will be released (ready to be used) when pointers
to their children become available.

Parallelism can be further improved by observing that splitting and recursive descent for
smaller sets of points can benefit of special treatment, by processing them with a faster algorithm.
It has been noticed [4] that Quicksort, for example, can be improved by resorting to Heapsort
(when recursion becomes too deep) and insertion sort, when partitions become smaller.

The k-d tree algorithm has now the following phases:

• Synchronous phase: all processors repeatedly worked together to split one large set of points.

• Asynchronous phase: when a processor becomes available, it chooses any small set of points
and builds a k-d tree over it.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052011 doi:10.1088/1742-6596/513/5/052011

5



points in 3-d 1 proc 4 procs 8 procs 12 procs
65536 0.856s 0.868s 0.857s 0.854s

252144 3.206s 1.337s 1.235s 1.391s
524288 6.551s 2.545s 1.338s 1.512s
786432 9.724s 3.991s 2.781s 1.862s

1572864 18.43s 7.515s 4.532s 3.623s
Sp 1 2.45 4.14 5.08
Ep 1 0.61 0.51 0.42

Table 1. Performance on a 12 cores machine

• Cross-references phase: release delayed nodes.

The cross-references phase can be dispensed with if nodes update, and possibly release, their
parents as soon they are ready.

It’s important to observe that the explicit representation of a delayed node can be dispensed
with if the programming environment offers facilities to represent delayed computation: through
channels and goroutines in the language Go, for example, or futures in C++.

5. Performance evaluation
Table 1 shows the results of performance tests for indexing sets of points in three dimensions.
The testing environment is: machine with 24 GB of RAM, with dual Intel Xeon 5660 processor.
Ubuntu 13.04 was the operating system used and the compiler was a gcc 4.7.3, wth OpenMP
activated (gcc flag ‘-fopenmp’).

Sets of points in the short queue were limited to 216, meaning that sets with less than 65537
points were processed by one processor. Times in the table are shown in seconds in columns by
number of cores used. Each has times for sets of different sizes. Only one set with 224 points
was generated. The elements for each test were chosen randomly from that set.

The first line of the table shows essentially the same results for all columns because only one
processor is being used, even when (last column) 12 processors are available.

The last two lines of the table show respectively speed-up and efficiency, based on their
standard definitions:

• Speed-up Sp =
Tp

T1

• Efficiency Ep =
Sp

p

6. Applications and related work
Both quad trees and k-d trees, if balanced, can be used to solve with O(n log n) work the
problems introduced in section 1 of finding the closest pair of points and finding k nearest
neighbours for all points in a set. The algorithms to solve those problems follow the recursive
descent pattern described in section 1 and are detailed in [1]. Samet discusses previous work on
parallel implementations of quad tree. Both Callahan and Har-Peled present algorithms that
run in linear time to enumerate the set of all well separated pairs of points given a balanced
k-d tree, in case of [10], or a balanced quad tree, in the case of [2]. Callahan [10] is possibly
the most detailed theoretical study of the relation between k-d tree and the well separated pairs
decomposition, and their realisation using parallel architectures. The technical literature doesn’t
seem show empirical results for implementations of either Har-Peled’s or Callhan’s algorithms.

The k nearest neighbours algorithm is especially attractive in HEP as it is found, for example,
in TMVA [17], the toolkit for multivariate analysis, available in ROOT. Track reconstruction by
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joining compatible triplets, used for example in CMS, can also benefit from the use of k-d trees,
even when cellular automata computation is used to find the neighbourhoods, if dimensions
higher than two are being considered. N-body computations based on Barnes-Hutt or Fast
Multipole Method in general depend on tree methods [18]. N-point correlation functions have
been tackled in Astronomy by the use of search in k-d trees [19].

7. Final remarks
Extensive testing shows that the algorithm performs remarkably well in achieving good
balancing: for sets of 224 points the height of the tree never exceeded 29 and that makes it
already a good candidate for sequential implementation.

The parallel tests shows that efficiency should be improved. The present implementation uses
garbage collected memory that degrades performance in the presence of any sort of concurrency.
In addition, non-locality effects in memory, that can be seen in both copy and movement of
keys that lie at the very heart of the algorithm, crucially affect speed-up when the number of
processing elements is increased. Improvements can certainly be achieved by removal of garbage
collected memory and, mainly, by careful allocation of memory for heap data structures closer
to their respective cores.
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