8 research outputs found

    First observation of tool use in wild gorillas

    Get PDF
    Descriptions of novel tool use by great apes in response to different circumstances aids us in understanding the factors favoring the evolution of tool use in humans. This paper documents what we believe to be the first two observations of tool use in wild western gorillas(Gorilla gorilla). We first observed an adult female gorilla using a branch as a walking stick to test water deepness and to aid in her attempt to cross a pool of water at Mbeli Bai, a swampy forest clearing in northern Congo. In the second case we saw another adult female using a detached trunk from a small shrub as a stabilizer during food processing. She then used the trunk as a self-made bridge to cross a deep patch of swamp. In contrast to information from other great apes, which mostly show tool use in the context of food extraction, our observations show that in gorillas other factors such as habitat type can stimulate the use of tools

    Limited carbon and biodiversity co-benefits for tropical forest mammals and birds

    Get PDF
    The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking

    Annual cycles are the most common reproductive strategy in African tropical tree communities

    Get PDF
    We present the first cross continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5,446 trees from 196 species across 12 sites, and fruiting events of 4,595 trees from 191 species, across 11 sites were monitored over periods of 6 to 29 years, and analysed to describe phenology at the continental level. To study phenology we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub-annual cycles were the next most common for flowering whereas supra-annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West-Central African tropical forests, while more species at sites in East-Central and Eastern African forests showed cycles ranging from sub-annual to supra-annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continen

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Female Leah Using a Walking Stick while Crossing Bipedally through an Elephant Pool at Mbeli Bai

    No full text
    <p>Female Leah first looked at the new elephant pool and the branch she later used as the walking stick, and entered the water without the tool (not shown). After re-entering the pool and taking the branch with her right hand, she walked bipedally 8–10 m into the water, frequently testing water deepness.</p

    Female Efi Using Trunk as a Stabilizer during Food Processing at Mbeli Bai

    No full text
    <p>The top photo shows the intact trunk shortly before Efi manipulated it (visible to the left of female Fulani). The trunk was then detached by female Efi with both hands (middle), pushed into the ground, and used as a stabilizing stick while dredging aquatic herbs towards her with her other hand (bottom).</p

    Pan-tropical prediction of forest structure from the largest trees

    Get PDF
    Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location: Pan-tropical. Time period: Early 21st century. Major taxa studied: Woody plants. Methods: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results: Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions: Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change
    corecore