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Abstract 196 

Aim. Large tropical trees form the interface between ground and airborne observations, 197 

offering a unique opportunity to capture forest properties remotely and to investigate their 198 

variations on broad scales. However, despite rapid development of metrics to characterize the 199 

forest canopy from remotely sensed data, a gap remains between aerial and field inventories. 200 

To close this gap, we propose a new pan-tropical model to predict plot-level forest structure 201 

properties and biomass from just the largest trees.  202 

Location. Pan-tropical 203 

Time period. Early 21st century 204 

Major taxa studied. Woody plants 205 

Method. Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested 206 

the prediction of the quadratic mean diameter, basal area, Lorey’s height, community wood 207 

density and aboveground biomass from the ith largest trees.  208 

Result. Measuring the largest trees in tropical forests enables unbiased predictions of plot and 209 

site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, 210 

basal area, Lorey’s height and community wood density and aboveground biomass with 12%, 211 

16%, 4%, 4% and 17.7% of relative error. Most of the remaining error in biomass prediction is 212 

driven by differences in the proportion of total biomass held in medium size trees (50-70 cm), 213 

which shows some continental dependency with American tropical forests presenting the 214 

highest proportion of total biomass in these intermediate diameter classes relative to other 215 

continents.  216 

Conclusion. Our approach provides new information on tropical forest structure and can be 217 

employed to accurately generate field estimates of tropical forest carbon stocks to support the 218 

calibration and validation of current and forthcoming space missions. It will reduce the cost of 219 

field inventories and contribute to scientific understanding of tropical forest ecosystems and 220 

response to climate change.   221 
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Introduction 222 

The fundamental ecological function of large trees is well established for tropical forests. They 223 

offer shelter to multiple organisms (Remm & Lõhmus, 2011; Lindenmayer et al., 2012), 224 

regulate forest dynamics, regeneration (Harms et al., 2000; Rutishauser et al., 2010) and total 225 

biomass (Stegen et al., 2011), and are important contributors to the global carbon cycle 226 

(Meakem et al., 2017). Being major components of the canopy, the largest trees may also 227 

suffer more than sub-canopy and understory trees from climate change, as they are directly 228 

exposed to variations in solar radiation, wind strength, temperature seasonality and relative air 229 

humidity (Laurance et al., 2000; Nepstad et al., 2007; Lindenmayer et al., 2012; Thomas et al., 230 

2013; Bennett et al., 2015; Meakem et al., 2017). Because they are visible from the sky, large 231 

trees are ideal for monitoring forest responses to climate change via remote sensing (Bennett 232 

et al., 2015; Asner et al., 2017).  233 

Large trees encompass a disproportionate fraction of total aboveground biomass (AGB) in 234 

tropical forests (Chave et al., 2001; Lutz et al., 2018), with some variations in their relative 235 

contribution to the total AGB among the tropical regions (Feldpausch et al., 2012). In Central 236 

Africa, the largest 5% of trees in a forest sample plot, i.e. the 5% of trees with the largest 237 

diameter at 130 cm, store 50% of forest plot aboveground biomass on average (Bastin et al., 238 

2015). Consequently, the density of large trees largely explains variation in forest AGB at local 239 

(Clark & Clark, 1996), regional (Malhi et al., 2006; Saatchi et al., 2007), and continental scales 240 

(Stegen et al., 2011; Slik et al., 2013). Detailing the contribution of each single tree to the 241 

diameter structure, we showed previously that plot-level AGB can be predicted from a few 242 

large trees (Bastin et al., 2015), with the measurement of the 20 largest trees per hectare being 243 

sufficient to estimate plot-level biomass with less than 15% error in reference to ground 244 

estimates. These findings suggested that a substantial gain of cost-effectiveness may be 245 

achieved by focusing forest inventories on the largest trees rather than all size classes. 246 

Similarly, it suggested that remote sensing (RS) approaches could focus on the measurement 247 

of the largest trees, instead of properties of the entire forest stand.  248 
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Several efforts are underway to close the gap between remote sensing of forest biomass and 249 

field surveys (Coomes et al., 2017; Jucker et al., 2017). However, existing RS approaches 250 

typically require ground measurement of all trees above or equal to 10 cm of diameter (D) for 251 

calibration (Asner et al., 2012; Asner & Mascaro, 2014). Collecting such data in the field is 252 

costly and time-consuming, which therefore limits the spatial representativeness of available 253 

plot networks. Besides, extrapolation methods of ground-based biomass estimations on RS 254 

data still faces important limits. For instance, using mean canopy height extracted from active 255 

sensors (Mascaro et al., 2011; Ho Tong Minh et al., 2016), or canopy grain derived from optical 256 

images (Proisy et al., 2007; Ploton et al., 2012, 2017; Bastin et al., 2014), the biomass is 257 

predicted with an error of only 10-20% compared to ground-based estimates. However, this 258 

good level of accuracy is limited to the extent of the RS scene used, which considerably 259 

decrease in the upscaling step necessary for national of global maps (Xu et al., 2017). A 260 

promising development to alleviate this spatial restriction lies in the ‘universal approach’, 261 

proposed by Asner et al. (2012) and further adapted in Asner and Mascaro (2014), in which 262 

plot-level biomass is predicted by a linear combination of ground-based and remotely-sensed 263 

metrics. The ‘universal approach’ relies upon canopy height metrics derived from radar or 264 

LiDAR (top of canopy height, TCH), and basal area (BA, i.e. the cumulated cross-sectional 265 

stems area) and community wood density (i.e. weighted by basal area, WDBA) derived from 266 

field inventories. Plot AGB is then predicted as follows (Asner et al., 2012):  267 

AGB = aTCHb1BAb2WDBA
b3(1)  268 

While generally performing better than approaches based solely on remote sensing of tree 269 

height (Coomes et al., 2017), this model relies on exhaustive ground measurements (i.e. wood 270 

density and basal area of all trees above 10 cm of diameter at 130 cm, neither of which is 271 

measured using any existing remotely sensed data). 272 

Recent advances in remote sensing allow the identification of single trees in the canopy (Ferraz 273 

et al., 2016), estimation of adult mortality rates for canopy tree species (Kellner & Hubbell, 274 

2017), description of the forest diameter structure (Stark et al., 2015), depiction of crown and 275 

gap shapes (Coomes et al., 2017), and even identification of some functional traits of canopy 276 
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species (Asner et al., 2017). As routine retrieval of some canopy tree metrics is within reach, 277 

we test here the capacity of the largest trees, i.e. trees that can be potentially derived using 278 

remote sensing, to predict plot-level biomass. To this end, we adapted equation (1) as follows:  279 

AGB = a(DgLT iHLT iWDLTi)b1 (2) 280 

where for the ith largest trees, DgLT is the quadratic mean diameter, HLT the mean height, and 281 

WDLT the mean wood density among the ith largest trees.  282 

Using a large database of forest inventories gathered across the tropics (Figure 1), including 283 

secondary and old growth forest plots, we test the ability of the largest trees to predict various 284 

metrics estimated at 1-ha plot level, namely the mean quadratic diameter, the basal area, the 285 

Lorey’s height (i.e. plot-average height weighted by basal area), the community wood density 286 

(i.e. plot-average wood density weighted by basal area) and mean aboveground live biomass 287 

(supplementary figure 1). By testing different numbers of largest trees as predictors, we aim to 288 

propose a threshold of the minimal number of largest trees required to predict forest plot 289 

metrics at a pan-tropical level with no bias and low uncertainty (i.e. error inferior to 20%). While 290 

previous work focused on estimating biomass in Central African forests (Bastin et al., 2015), 291 

the present study aims at generalizing the potential of large trees to predict these different plot 292 

metrics at continental and pan-tropical scales. Taking advantage of a unique dataset gathered 293 

across the tropics (867 1-ha plots), we also investigate major differences in forest structure 294 

across the three main tropical regions: the Americas, Africa and Asia. We further discuss how 295 

this approach can be used to guide innovative RS techniques and increase the frequency and 296 

representativeness of ground data to support global calibration and validation of current and 297 

planned space missions. These include the NASA Global Ecosystem Dynamics Investigation 298 

(GEDI), NASA-ISRO Synthetic Aperture Radar (NISAR), and ESA P-band radar (BIOMASS) 299 

(Le Toan et al., 2011; Dubayah et al., 2014). This study is a step forward in bringing together 300 

remote sensing and field sampling techniques for quantification of terrestrial C stocks in tropical 301 

forests.   302 



14 
 

Material & Methods 303 

Database 304 

For this study, we compiled standard forest inventories conducted in 867 1-ha plots from 118 305 

sites across the three tropical regions (Figure 1), including mature and secondary forests. Each 306 

site comprises all the plots in a given geographical location, i.e. within a 10 km radius and 307 

collected by a Principal Investigator and its team. These consisted of 389 plots in America (69 308 

sites), 302 plots in Africa (35 sites) and 176 plots in Asia (14 sites). Data were provided by 309 

Principal Investigators (see supplementary Table 1), and through datasets available on the 310 

following networks: TEAM (http://www.teamnetwork.org/), CTFS (http://www.forestgeo.si.edu/; 311 

Condit et al., 2012) and ForestPlots (https://www.forestplots.net/) for AfriTRON (the African 312 

Tropical Rainforest Observation Network; www.afritron.org) and RAINFOR (the Amazon forest 313 

inventory network; http://www.rainfor.org/) networks.  314 

We selected plots located between 23°N and 23°S, including tropical islands, with an area of 315 

1-ha to ensure stable intra-sample variance in basal area (Clark & Clark, 2000). Plots in which 316 

at least 90% of the stems were identified to species, and in which all stems with the diameter 317 

at 130 cm greater than or equal to 10 cm had been measured were included. Wood density, 318 

here recorded as the wood dry mass divided by its green volume, was assigned to each tree 319 

using the lowest available taxonomic level of botanical identifications (i.e. species or genus) 320 

and the corresponding average wood density recorded in the Global Wood Density Database 321 

(GWDD, Chave et al., 2009; Zanne et al., 2009). Botanical identification was harmonized 322 

through the Taxonomic Names Resolution Service (http://tnrs.iplantcollaborative.org), for both 323 

plot inventories and the GWDD. For trees not identified to species or genus (~5%), we used 324 

plot-average wood density. We estimated heights of all trees using Chave et al.’s (2014) pan-325 

tropical diameter-height model which accounts for heterogeneity in the D-H relationship using 326 

an environmental proxy: 327 

Ln(H) = 0.893−E+0.760ln(D)−0.0340 ln(D)2 (3) 328 

Where D is the diameter at 130 cm and E is a measure of environmental stress (Chave et al., 329 

2014). For sites with tree height measurements (N=20), we developed local D-H models, using 330 
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a Michaelis-Menten function (Molto et al., 2014). We used these local models to validate the 331 

predicted Lorey’s height (i.e. plot average height weighted by BA) from the largest trees, of 332 

which height has been estimated with a generic H-D model (equation 3, Chave et al. 2014). 333 

We estimated plot biomass as the sum of the biomass of live tree with diameter at 130 cm 334 

superior or equal to 10 cm, using the following pan-tropical allometric model (Réjou-Méchain 335 

et al., 2017):  336 

AGB=exp(-2.024-0.896E+0.920ln(WD)+2.795ln(D)-0.0461(ln(D2))) (4) 337 

Plot-level metric estimation from the largest trees 338 

The relationship between each plot metric, namely basal area (BA), the quadratic mean 339 

diameter (Dg), Lorey’s height (HBA; the mean height weighted by the basal area) and the 340 

community wood density (WDBA; the mean wood density weighted by the basal area), and 341 

those derived from largest trees was determined using an iterative procedure following Bastin 342 

et al. (2015). Trees were first ranked by decreasing diameter in each plot. An incremental 343 

procedure (i.e. including a new tree at each step) was used to sum or average information of 344 

the i largest trees for each plot metric. Each plot-level metric was predicted by the respective 345 

metric derived from the ith largest trees. For each increment, the ability (goodness of fit) of the 346 

i largest trees to predict a given plot-metric was tested through a linear regression. To avoid 347 

overfitting, a Leave-One-Out procedure was used to develop independent site-specific models 348 

(N=118). Specifically, the model to be tested at a site was developed with data from all other 349 

sites. Errors were then estimated as the relative root mean square error (rRMSE) computed 350 

between observed and predicted values (X):  351 

𝑟𝑅𝑀𝑆𝐸 = '∑ (*+,-	/	*0123)5

6
𝑋89  (5)  352 

The form of the regression model (i.e. linear, exponential) was selected to ensure a normal 353 

distribution of the residuals. 354 

To estimate plot basal area, we used a simple power-law constrained on the origin, as linear 355 

model resulted in non-normal residuals. Plot-level basal area (BA) was related to the basal 356 

area for the i largest trees (BAi) using: 357 
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BA = b1 ΣBAi
γ1 (6) 358 

To estimate the quadratic mean diameter, Lorey’s height and the wood density of the 359 

community, we used simple linear models relating the plot-level metrics and the value of the 360 

metrics for the i largest trees: 361 

Dg = a2 + b2 Dgi (7) 362 

HBA = a3 + b3 Hi  (8) 363 

WDBA = a4 + b4 WDi  (9) 364 

Both Lorey’s height (HBA) and the average height ( Hi  ) of the ith largest trees depend on the 365 

same D-H allometry, which always contains uncertainty whether we use a local, a continental 366 

or a pan-tropical model. To test the dependence of the prediction of HBA from Hi  on the 367 

allometric model, we used measurement from Malebo in the Democratic Republic of the 368 

Congo, where all heights were measured on the ground (see supplementary figure 2). 369 

The quality of the predictions of plot-level metrics from the largest trees is quantified using the 370 

relative root mean square error (rRMSE) between measured and predicted values, and 371 

displayed along the cumulated number of largest trees. Model coefficients are estimated for 372 

each metric derived from the largest trees (NLT) and averaged across the 118 models (see 373 

supplementary table 2).  374 

Mean rRMSE is plotted as a continuous variable, while its variation is presented as a 375 

continuous area between 5th and the 95th percentiles of observed rRMSE.  376 

The optimal number of largest trees for plot-level biomass estimation 377 

The optimal number of largest trees NLT was determined from the prediction of each plot-level 378 

metric considered above, i.e. keeping a small number of trees while ensuring a low level of 379 

error for each structural parameter. We then predicted plot-level biomass from the NLT model 380 

(equation 2). The final error was calculated by propagating the entire set of errors related to 381 

equation 4 (Réjou-Méchain et al., 2017) in the NLT model (i.e. error associated to each allometric 382 

model used). The model was then cross-validated across all plots (N=867). 383 
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Investigating residuals: what the largest trees do not explain 384 

To understand the limits of predicting AGB through NLT, we further investigated the relationship 385 

between AGB residuals and key structural and environmental variables using linear modelling. 386 

Forest structure was investigated through the total stem density (N), the quadratic mean 387 

diameter (Dg), Lorey’s height (HBA) and community wood density (WBBA). As environmental 388 

data, we used the mean annual rainfall and the mean temperature computed over the last 10 389 

years at each site using the Climate Research Unit data (New et al., 1999, 2002), along with 390 

rough information on soil types (Carré et al., 2010). Major soil types were computed from the 391 

soil classification of the Harmonized World Soil Database into IPCC (intergovernmental panel 392 

on climate change) soil classes. In addition, considering observed differences in forest 393 

structure across tropical continents (Feldpausch et al., 2011, 2012) and recent results on pan-394 

tropical floristic affinities (Slik et al., 2015), we tested for an effect of continent (America, Africa 395 

and Asia) on the AGB residuals. Differences in forest structure and AGB among continents 396 

were also illustrated through the analysis of their distribution.   397 

The importance of each variable was evaluated by calculating the type II sum of squares that 398 

measures the decrease in residual sum of squares due to an added variable once all the other 399 

variables have been introduced into the model (Langsrud, 2003). Residuals were investigated 400 

at both plot and site levels, the latter analyzed to test for any influence of the diameter structure, 401 

which is usually unstable at the plot level due to the dominance of large trees on forest metrics 402 

at small scales (Clark & Clark, 2000). Here we use a principal component analysis (PCA) to 403 

summarize the information held in the diameter structure by ordinating the sites along the 404 

abundance of trees in each diameter class (from 10 to +100 cm by 10 cm bins).  405 

406 
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Results 407 

Plot-level metrics 408 

Plot metrics averaged at the site level (867 plots, 118 sites) present important variations within 409 

and between continents. In our database, the quadratic mean diameter varies from 15 to 42 410 

cm2ha-1, the basal area from 2 to 58 m2ha-1, Lorey’s height from 11 to 33 m and the wood 411 

density weighted by the basal area from 0.48 to 0.84 gcm-3 (supplementary figure 1). Such 412 

important differences between minimal and maximal values are observed because our 413 

database cover sites with various forest types, from young forest colonizing savannas to old 414 

growth forest. However, most of our sites are found in mature forests, as shown by relatively 415 

high average and median value of each plot metric (average aboveground biomass = 302 416 

Mgha-1; supplementary figure 1). In general, highest values of aboveground biomass are found 417 

in Africa, driven by highest values of basal area and highest estimations of Lorey’s height. 418 

Highest values of wood density weighted by basal area are found in America.  419 

Plot-level estimation from the i largest trees 420 

Overall, plot metrics at 1-ha scale were well predicted by the largest trees, with qualitative 421 

agreement among global and continental models (Figure 2). When using the 20 largest trees 422 

to predict basal area (BA) and quadratic mean diameter (Dg), the mean rRMSE was < 16% 423 

and 12%, respectively (Figs 3a and 3b). Lorey’s height (HBA) and wood density weighted by 424 

basal area (WDBA) were even better predicted (Figs 3c and 3d), with mean rRMSE of 4% for 425 

the 20 largest trees. The prediction of Lorey’s height from the largest trees using local 426 

diameter-height model (supplementary figure 2a) yielded results similar to those obtained 427 

using equation 3 of Chave et al. (2014). More importantly, it also yielded similar results to 428 

prediction of Lorey’s height from the largest trees using plots where all the trees were 429 

measured on the ground (supplementary figure 2b). This suggests that our conclusions are 430 

robust to the uncertainty introduced by height-diameter allometric models. 431 

AGB prediction from the largest trees 432 

We selected “20” as the number of largest trees to predict plot metrics. The resulting model 433 

predicting AGB (Mg ha-1) based on the 20 largest trees is: 434 
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AGB = 0.0735 × (Dg20H20WD20)1.1332 (rRMSE=0.179; R2=0.85; AIC= -260.18) (10) 435 

Because the exponent was close to 1, we also developed an alternative and more operationa436 

l model with the exponent constrained to 1, given by:  437 

AGB = 0.195 × (Dg20H20WD20) (rRMSE=0.177; R2=0.85; AIC=-195) (11) 438 

Ground measurements of plot AGB were predicted by our NLT model with the exponent 439 

constrained to 1, with a total error of 17.9% (Figure 4), a value which encompass the error of 440 

the NLT model and the error related to the allometric model chosen. The Leave-One-Out cross-441 

validation procedure yielded similar results (rRMSE=0.19; R2=0.81), validating the use of the 442 

model on independent sites.  443 

Determining the cause of residual variations 444 

The explanatory variables all together explain about 37% of the variance in AGB both at plot 445 

and site levels when omitting the diameter structure, and about 63% at site level when included 446 

(Figure 5). In general, forest structure and particularly the stem density explained most of the 447 

residuals (table 1; weights: 79% and 54% at plot- and site-level respectively). The stem density 448 

was followed by a continental effect (weights: 18%, 28% and 1%, respectively for Africa, 449 

America and Asia) and by the effect of HBA and WDBA (respective weights: 1% and 0% at the 450 

plot level, 0% and 11% at the site level, and 23% and 0% when accounting for the diameter 451 

structure at the site level). Inclusion of the diameter structure provided the best explanation of 452 

residuals, with 63% of variance explained, and a weight of 69% for the first axis of the PCA 453 

(supplementary figure 3). This first axis of the PCA was related to the general abundance of 454 

trees at a site, and in particular medium-sized trees (40-60cm). Among environmental 455 

variables, only rainfall was significantly related to the residuals at the site level when the 456 

diameter structure was considered (2%).  457 

Differences among continents 458 

While diameter structure explained a large fraction of the residual variance of our global model, 459 

there was marked difference in forest structure across continents (Figure 6). Consequently, 460 

we investigated differences between continents in the distribution of residuals of the pan-461 

tropical model (Figure 6a), in the relative contribution of the 20 largest trees to plot total 462 
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biomass (Figure 6b), and in the contribution to the total aboveground biomass per diameter 463 

class (Figs. 6c-f). To this end, we considered the following four classes of diameter at 130 cm: 464 

10 to 30 cm, 30 to 50 cm, 50 to 70 cm and above 70 cm. Results show that the prediction of 465 

biomass from the 20 largest trees using the pan-tropical model tends to be slightly 466 

overestimated in Africa (+ 3%) and underestimated in America (- 3%) and in Asia (-5%) (Figure 467 

6a). The proportion of biomass is higher in high diameter class (over 70 cm) in Africa, in 468 

intermediate diameter classes (between 30 and 70 cm) in America and is equally distributed 469 

among the different diameter classes in Asia (Figure 6 c-d).  470 
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Discussion 471 

The largest trees, convergences and divergences between continents 472 

Sampling a few largest trees per hectare generally allows an unbiased prediction of four key 473 

descriptors of forest structures across the tropics. There is generally no improvement in 474 

predicting biomass, quadratic mean diameter, Lorey’s height (HBA) or community wood density 475 

beyond the first 10-to-20 largest trees (Figure 2, Figure 3a). But when a forest plot presents 476 

an abundant number of large trees (Figure 5d), increasing the number of trees sampled does 477 

improve the model’s accuracy. This is due to the fact that the higher total AGB in a plot, the 478 

lower the proportion of total AGB encompassed by the largest trees. This is particularly true 479 

for BA for which rRMSE continues to decrease up to 100 largest trees (Figure 2a). In contrast, 480 

Lorey’s height predictions are altered when a large number of trees are included (Figure 2c), 481 

i.e. when smaller, often suppressed, trees draw the average down (Farrior et al., 2016). This 482 

might explain why the prediction of AGB does not mirror that of basal area (Figure 2b, Figure 483 

3a), and suggest that the number of largest trees shall be set independently to each predictor 484 

considered. Interestingly, the evolution of relative error in AGB prediction as a function of the 485 

number of largest trees considered does not follow the same path between continents. For 486 

instance, the error of prediction saturates more quickly in Africa and Asia than America. 487 

Investigation of residuals showed that the diameter structure (Figure 5c, supplementary Figure 488 

3b), and in particular the number of medium size trees (Figure 5d), drives variability in AGB 489 

predictions. It is therefore not surprising to see that in our dataset the site with higher levels of 490 

underestimations is the one with the highest number of medium size trees, which is found in 491 

Asia in the Western Ghats of India.  492 

The good performance of models based on the 20 largest trees in predicting Lorey’s height 493 

and community wood density at site level was not surprising. Both metrics were indeed 494 

weighted by basal area, driven de facto by the largest trees. Their consistency across sites 495 

and continents was not expected though, which emphasize the generality of our approach.  496 

The predictability of plot-level forest structure metrics from the largest trees implies that 497 

characteristics of smaller trees do not vary completely independently from those of the larger 498 
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trees. For example, plots where the largest trees have low basal area tend to have low plot-499 

level basal area (Figure 3a), meaning that the total size of the smaller trees is sufficiently 500 

constrained so that it does not compensate for the small size of the largest trees. Such 501 

constraints could arise through size-frequency distributions being set by allometric scaling 502 

rules (Enquist et al., 2009), or could be due to the largest trees responding in the same way 503 

as the remaining smaller trees to environmental drivers.  504 

Despite the general consistency of these relationships across continents, slight differences are 505 

evident when comparing the pan-tropical model residuals across continents (Figure 6, 506 

supplementary figure 4). These differences indicate biogeographic variation in forest structure. 507 

In America, our pan-tropical model tends to slightly underestimate basal area (mean: -5%) and 508 

overestimate Lorey’s height (mean: +3%) (supplementary figure 4). This suggests that large 509 

trees make up a smaller proportion of basal area in America and that for a given diameter we 510 

find higher trees (supplementary figure 2), the later confirming that the shape of height-511 

diameter allometries varies between continents (Banin et al., 2012; Sullivan et al., 2018). In 512 

Africa, large trees (i.e. DBH > 70 cm) are more abundant and account for a large fraction of 513 

plot biomass (figure 6f). This supports previous observations that African forests are 514 

characterized by fewer but larger stems (Feldpausch et al., 2012; Lewis et al., 2013), while 515 

forests in the Americas have more stems but generally have lower biomass (Sullivan et al., 516 

2017). In Asia, the distribution of the biomass across diameter classes appears more balanced 517 

(Figure 6c-f). Such differences in forest structure, even if being quite limited, suggest tropical 518 

forests differ between continents in terms of dynamics, carbon cycling, response and feedback 519 

to climate and resilience to external forcings (e.g. climate change, forest degradation and 520 

deforestation).  521 

Interestingly, while a recent global phylogenetic classification of tropical forest groups 522 

American with African forests vs. Asian forests (Slik et al., 2018), our study of forest structure 523 

properties tends more to single out American forests, and particularly highlight the contrast in 524 

between African and American forests. Although this deserves further investigations, it might 525 

reveal a lack of close relationship between forest structure properties and phylogenic similarity, 526 
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which echoes recent results on the absence of relationship between tropical forest diversity 527 

and biomass (Sullivan et al., 2017). 528 

Largest trees, a gateway to global monitoring of tropical forests 529 

Revealing the predictive capacity held by the largest trees, our results constitute a major step 530 

forward to monitor forest structures and biomass stocks. The largest trees in tropical forests 531 

can therefore be used to accurately predict various ground-measured properties (i.e. the 532 

quadratic mean diameter, the basal area, Lorey’s height and community wood density), while 533 

previous work has predicted only biomass “estimates” (e.g. Slik et al., 2013; Bastin et al., 534 

2015). Our approach allows us to (i) describe forest structure independently of any biomass 535 

allometric model (ii) and integrates environmental-based variations in D-H relationship, known 536 

to vary locally (Feldpausch et al., 2011; Kearsley et al., 2013;). It is also (iii) relatively 537 

insensitive to differences in floristic composition and community wood density (Poorter et al., 538 

2015).  539 

Furthermore, the “largest trees” models were developed for each plot-level metric and for any 540 

number of largest trees. Thus, they do not rely on any arbitrary threshold of tree diameter. Note 541 

that the optimal number of largest trees to be measured (i.e. 20) was set for demonstration 542 

and can vary depending on the needs and capacities of each country or project (see 543 

supplementary table 2). In the same way, local models could integrate locally-developed 544 

biomass models, when available. Consequently our approach (i) can be used in young or 545 

regenerating un-managed forests with a low “largest tree” diameter threshold and (ii) is 546 

compatible with recent remote sensing approaches able to single out canopy trees and 547 

describe their crown and height metrics (Ferraz et al., 2016; Coomes et al., 2017).  548 

Aboveground biomass model from the largest trees, a multiple opportunity  549 

Globally, the NLT model for the 20 largest trees allows plot biomass to be predicted with 17.9% 550 

error. This result is a pan-tropical validation of results obtained in Central Africa (Bastin et al., 551 

2015). It opens new perspectives towards cost-effective methods to monitor forest structures 552 

and carbon stocks through largest trees metrics, i.e. metrics of objects directly intercepted by 553 

remote-sensing products.  554 
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Developing countries willing to implement Reduction of Emissions from Deforestation and 555 

Forest Degradation (REDD+) activities, shall also report on their carbon emissions and develop 556 

a national reference level (IPCC, 2006; Maniatis & Mollicone, 2010). However, most tropical 557 

countries lack capacities to assume multiple, exhaustive and costly forest carbon inventories 558 

(Romijn et al., 2012). By measuring only a few large trees per hectare, our results show that it 559 

is possible to obtain unbiased estimates of aboveground C stocks in a time and cost-efficient 560 

manner. Assuming that 400 to 600 trees D > 10 cm are measured in a typical 1-ha sample 561 

plot, monitoring only 20 trees is a significant improvement. Although finding the 20 largest trees 562 

in a plot of several hundred individuals requires evaluating more than 20 trees, in practice, a 563 

conservative diameter threshold could be defined to ensure that the 20 largest trees are 564 

sampled. An alternative approach could also be found in the development of relascope-based 565 

approach adapted to detection of the largest trees in tropical forests. Using such approach 566 

would facilitate rapid field sampling in extensive areas to produce large scale AGB estimates. 567 

Those could fulfil the needs in calibration and validation of current and forthcoming space 568 

missions focused on aboveground biomass.  569 

Our findings also point towards the potential effectiveness of using remote sensing techniques 570 

to characterize canopy trees for inferring entire forest stands attributes. Remote sensing data 571 

could be used for direct measurement (e.g. tree level metrics such as height, crown width, 572 

crown height) of the largest trees as a potential alternative to indirect development of complex 573 

metrics (e.g. mean canopy height, texture) used to extrapolate forest properties. While the use 574 

of single-tree approach has shown some limitations to extrapolate plot metrics (Coomes et al., 575 

2018), we have still to investigate their potential to identify largest trees. Some further 576 

refinements are needed, but most of the tools required to develop “largest trees” models are 577 

readily available. In particular, Ferraz et al. (2016) developed an automated procedure to locate 578 

single trees based on airborne LiDAR data, to measure their height and crown area. Crown 579 

area could further be linked to basal area, as the logarithm of crown area is consistently 580 

correlated with a slope of 1.2-1.3 to the logarithm of tree diameter across the tropics (Blanchard 581 

et al., 2016). Regarding wood density, hyperspectral signature and high resolution topography 582 
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offers a promising way to assess functional traits remotely (e.g. Asner et al., 2017; Jucker et 583 

al., 2018) which could potentially provide proxies of wood density. Alternative approaches 584 

could focus on the development of plot-level AGB prediction by replacing the basal area of the 585 

largest trees with their crown metrics. While the measurement of crown areas has yet to be 586 

generalized when inventorying plots, several biomass allometric models already partition trunk 587 

and crown mass (Ploton et al., 2016; Coomes et al., 2017; Jucker et al., 2017).  588 

The main limitation of our approach lies in the limited inference that can be made on the 589 

understory and sub-canopy trees. We show that most of the remaining variance is explained 590 

by variations in diameter structures, and in particular among the total stem density. 591 

Interestingly, stem density was generally identified as a poor predictor of plot biomass in 592 

tropical forests (Slik et al., 2010; Lewis et al., 2013). However, our results show that stem 593 

density explains most of the remaining variance (Table S1). This suggests that, in addition to 594 

trying to understand large-scale variations in large trees and other plot metrics, which can be 595 

directly quantified from remote sensing, we should also put more effort into understanding 596 

variation in smaller trees, which mainly drives total stem density and the total floristic diversity. 597 

Smaller trees are also essential to characterize forest dynamics and understand changes in 598 

carbon stocks. Several options are nonetheless possible from remote sensing, considering the 599 

variation in lidar point density below the canopy layer (D’Oliveira et al., 2012), the distribution 600 

of leaf area density (Stark et al., 2012, 2015; Tang & Dubayah, 2017; Vincent et al., 2017) or 601 

the use of multitemporal lidar data to get information on forest gap generation dynamics and 602 

consequently on forest diameter structure (Kellner et al., 2009; Farrior et al., 2016).  603 

Large trees in degraded forests 604 

If large trees are a key feature of unmanaged forests, they are conspicuously absent from 605 

managed or degraded forests. Indeed, large trees are targeted by selective or illegal logging, 606 

and are the first to disappear or to suffer from incidental damages when tropical forests are 607 

exploited for timber (Sist et al., 2014). The loss of largest trees drastically changes forest 608 

structures and diameter distributions, and their loss is likely to counteract the consistency in 609 

forest structures observed through this study. Understanding how, or whether, managed 610 
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forests deviate from our model predictions could help characterize forest degradation, which 611 

accounts for a large fraction of carbon loss worldwide (Baccini et al., 2017), acknowledging 612 

that rapid post-disturbance biomass recovery (Rutishauser et al., 2015) will remain hard to 613 

capture. 614 

Conclusion – towards improved estimates of tropical forest biomass 615 

The acquisition, accessibility and processing capabilities of very high spatial, spectral and 616 

temporal resolution remote sensing data has increased exponentially in recent years (Bastin 617 

et al., 2017). However, to develop accurate global maps, we will have to obtain a greater 618 

number of field plots and develop new ways to use remote sensing data. Our results provide 619 

a step forward for both by (i) drastically decreasing the number of individual tree measurements 620 

required to get an accurate, yet less precise, estimate of plot biomass and (ii) opening the way 621 

to direct measurement of plot metrics measured from remote sensing to estimate plot biomass.  622 

As highlighted by Clark and Kellner (2012), new biomass allometric models relating plot-level 623 

biomass measured from destructive sampling and plot-level metric measured from remote-624 

sensing products should be developed, as an alternative to current tree-level allometric 625 

models. Such an effort will largely lower operational costs and uncertainties surrounding 626 

terrestrial C estimates, and consequently, will help developing countries in the development of 627 

national forest inventories and aid the scientific community in better understanding the effect 628 

of climate change on forest ecosystems.  629 
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Figures 656 

 657 

Figure 1. Geographic distribution of the plot database. We used 867 plots of 1 hectare 658 

from 118 sites. Dots are colored according to floristic affinities (Slik et al. 2015), with America, 659 

Africa and Asia respectively in orange, green and blue. They are also sized according the total 660 

area surveyed in each site. In the background, moist forests are displayed in dark green and 661 

dry forest in light green.   662 
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 663 

Figure 2. Quality of the prediction of plot metrics from largest trees. Variation of the 664 

relative Root Mean Square Error (rRMSE) of the prediction of plot metric from i largest trees 665 

versus the cumulative number of largest trees for (a) basal area, (b) quadratic mean diameter, 666 

(c) Lorey’s height and (d) wood density weighted by the basal area. Results are displayed at 667 

the pan-tropical level (main plot in grey) and at the continental level (subplots; orange = 668 

America; green = Africa; blue = Asia). The solid line and shading shows the mean rRMSE and 669 

the 5th and the 95th percentiles. Dashed lines represent the mean rRMSE observed for each 670 

model, when considering the 20 largest trees.  671 
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672 

Figure 3. Prediction of plot metrics (y-axis) from the 20 largest trees (x-axis). Results are 673 

shown for (a) basal area, (b) quadratic mean diameter, (c) Lorey’s Height and (d) wood density 674 

weighted by the basal area. Each dot corresponds to a single plot, colored in orange, green 675 

and blue for America, Africa and Asia respectively. Both pan-tropical (black dashed lines) and 676 

continental (coloured lines) regression models are displayed. These results show that 677 

substantial part of remaining variance, i.e. not explained by largest trees, is found when 678 

predicting the basal area and the quadratic mean diameter, with slight but significant 679 

differences between continents.   680 
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 681 

Figure 4. Prediction of AGB from plot metrics of the 20 largest trees. Results are shown 682 

for the 867 plots, among the three continents colored orange, green and blue for America, 683 

Africa and Asia respectively. The regression line of the model is shown as a continuous black 684 

line while the dashed black line shows a 1:1 relationship. The figure shows an unbiased 685 

prediction of AGB across the 867 plots, with slight but significant differences between the 3 686 

continents.   687 
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 688 

Figure 5. Predicted vs. observed residuals of aboveground biomass predicted from the 689 

20 largest trees. Residuals are explored at three different levels: (a) plot, (b) site [without 690 

considering the diameter structure as an explanatory variable], (c) site [considering the 691 

diameter structure] and (d) along the stem density of medium size trees. America, Africa and 692 

Asia are colored in orange, green and blue respectively. The figures show a good prediction 693 

of residuals in (a) and (b), driven by stem density, and a less biased prediction in (c), driven by 694 
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the diameter structure. Variance of observed residuals are also well explained by the stem 695 

density of medium size trees (d), which mainly drive the first axis of the PCA.   696 
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 697 

Figure 6. Comparison across continents of aboveground biomass prediction per site and their 698 

contribution to different share of the diameter structure. Africa, Asia and America, are colored 699 

in green, blue and orange, respectively. The distribution of the residuals of pan-tropical 700 

aboveground biomass prediction from the 20 largest trees (a) shows predictions are slightly 701 

overestimated in Africa (+3%), and slightly underestimated in Asia (-3%) and America (-5%). 702 

The proportion of aboveground biomass in the 20 largest trees (b) is highest in Africa (48%), 703 

followed by Asia (40%) and America (35%). The decomposition across four diameter classes 704 

(c-f, i.e. from 10 to 30, 30 to 50, 50 to 70 and beyond 70 cm) of their relative share of the total 705 

biomass shows that most of the biomass is found in the large trees in Africa, and in the small 706 
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to medium trees in America. Asia presenting a more balanced distribution of biomass across 707 

the diameter structure.   708 
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Tables 709 

Table 1. Weight of each variable retained for the explanation of AGB residuals. Weights 710 

are calculated as a type ll sum of squares, which measures the decreased residual sum of 711 

squares due to an added variable once all the other variables have been introduced into the 712 

model. Results are shown for the exploration of residuals at the plot and at the site level, with 713 

and without consideration of the diameter structure. Weights are dominated by structural 714 

variables, and in particular the stem density and the diameter structure. Height, wood density 715 

and continent have also a non-negligible influence on residuals. 716 

  717 Level of residual Parameter Weight  
Plot    
 Stem density* 79 
 Continent* 18 
 Lorey’s height* 1 
 Major soil types 1 
 Temperature 1 
 Wood density weighted 

by the basal area 
0 

 Rainfall 0 
   
Site without 
diametric structure 

  

 Stem density*  54 
 Continent* 28 
 Wood density weighted 

by the basal area* 
11 

 Rainfall 3 
 Major soil types 3 
 Temperature 2 
 Lorey’s height 0 
   
   
Site with diametric 
structure 

  

 PCA axis 1* 69 
 Lorey’s height* 23 
 Rainfall* 3 
 Major soil types 3 
 Continent 1 
 Temperature 1 
 Wood density weighted 

by the basal area 
0 

 PCA axis 2 0 
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 1134 
Supplementary figure 1. Cross-continent comparison of plot-metrics distribution 1135 

averaged at the site level. Figures illustrates respectively the distribution of the values for the 1136 

quadratic mean diameter (a), basal area (b), Lorey’s height (c), wood density (d) and 1137 

aboveground biomass (e).   1138 
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 1139 

Supplementary figure 2. Lorey’s Height prediction from the 20 largest trees. Figures 1140 

show the results using (i) local D-H allometries for 20 sites (left subfigure) and (ii) using plots 1141 

where height is measured on all trees in Malebo site in the Democratic Republic of the Congo 1142 

(right subfigure).   1143 
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 1144 

Supplementary figure 3. PCA on the diameter structure and corresponding mean 1145 

distribution for high contributions of axis 1 and axis 2. (A) Illustration of top and low 1146 

percentile observed for each axis, with diameter distributions represented as the relative 1147 

difference with the average observed distribution.(B) Biplot with contribution to the PCA of all 1148 

the diameter classes, with the respective position of each site in the space defined by axis1 1149 

and 2. Axis 1 is driven by differences in global abundance of trees and axis 2 is driven by a 1150 

difference of balance between abundance of small vs. large trees. Colors represent continent, 1151 

with Africa, America and Asia respectively in green, orange and blue.   1152 
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 1153 
Supplementary figure 4. Cross-continent comparison of the relative residuals from the 1154 

prediction of plot-metrics from the 20 largest trees. The relative residuals are generally low 1155 

(<10%). Systematic small differences can however be found in America, where the quadratic 1156 

mean diameter and Lorey’s height tend to be slightly overestimated and the basal area slightly 1157 

underestimated.  1158 


