9 research outputs found

    Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter

    Get PDF
    PEP was a Wellcome Trust Clinical Research Training Fellow and this research was supported by the Wellcome Trust (Grant 098882/Z/12/Z). This research was also supported by the National Institute for Health Research (NIHR) Clinical Research Facility at Guy’s & St Thomas’ NHS Foundation Trust and NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London

    Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes

    Get PDF
    Epidemiological studies have consistently shown associations between elevated concentrations of urban particulate matter (UPM) air pollution and exacerbations of asthma and chronic obstructive pulmonary disease, which are both associated with viral respiratory infections. The effects of UPM on dendritic cell (DC) -stimulated CD4 T lymphocytes have been investigated previously, but little work has focused on CD8 T-lymphocyte responses despite their importance in anti-viral immunity. To address this, we examined the effects of UPM on DC-stimulated naive CD8 T-cell responses. Expression of the maturation/activation markers CD83, CCR7, CD40 and MHC class I on human myeloid DCs (mDCs) was characterized by flow cytometry after stimulation with UPM in vitro in the presence/absence of granulocyte–macrophage colony-stimulating factor (GM-CSF). The capacity of these mDCs to stimulate naive CD8 T-lymphocyte responses in allogeneic co-culture was then assessed by measuring T-cell cytokine secretion using cytometric bead array, and proliferation and frequency of interferon-c (IFN-c)-producing T lymphocytes by flow cytometry. Treatment of mDCs with UPM increased expression of CD83 and CCR7, but not MHC class I. In allogeneic co-cultures, UPM treatment of mDCs enhanced CD8 T-cell proliferation and the frequency of IFN-c+ cells. The secretion of tumour necrosis factor-a, interleukin-13, Granzyme A and Granzyme B were also increased. GM-CSF alone, and in concert with UPM, enhanced many of these T-cell functions. The PMinduced increase in Granzyme A was confirmed in a human experimental diesel exposure study. These data demonstrate that UPM treatment of mDCs enhances priming of naive CD8 T lymphocytes and increases production of pro-inflammatory cytokines. Such UPM-induced stimulation of CD8 cells may potentiate T-lymphocyte cytotoxic responses upon concurrent airway infection, increasing bystander damage to the airways

    Vitamin D Counteracts an IL-23-Dependent IL-17A+IFN-γ+ Response Driven by Urban Particulate Matter.

    Get PDF
    Urban particulate matter (UPM) air pollution and vitamin D deficiency are detrimentally associated with respiratory health. This is hypothesized to be due in part to regulation of IL-17A, which UPM is reported to promote. Here, we used a myeloid dendritic cell (DC)-memory CD4+ T cell co-culture system to characterize UPM-driven IL-17A+ cells, investigate the mechanism by which UPM-primed DCs promote this phenotype, and address evidence for cross-regulation by vitamin D. CD1c+ myeloid DCs were cultured overnight with or without a reference source of UPM and/or active vitamin D (1,25[OH]2D3) before they were co-cultured with autologous memory CD4+ T cells. Supernatants were harvested for cytokine analysis on Day 5 of co-culture, and intracellular cytokine staining was performed on Day 7. UPM-primed DCs increased the proportion of memory CD4+ T cells expressing the T helper 17 cell (Th17)-associated cytokines IL-17A, IL-17F, and IL-22, as well as IFN-γ, granulocyte-macrophage colony-stimulating factor, and granzyme B. Notably, a large proportion of the UPM-driven IL-17A+ cells co-expressed these cytokines, but not IL-10, indicative of a proinflammatory Th17 profile. UPM-treated DCs expressed elevated levels of il23 mRNA and increased secretion of IL-23p40. Neutralization of IL-23 in culture reduced the frequency of IL-17A+IFN-γ+ cells without affecting cell proliferation. 1,25(OH)2D3 counteracted the UPM-driven DC maturation and inhibited the frequency of IL-17A+IFN-γ+ cells, most prominently when DCs were co-treated with the corticosteroid dexamethasone, while maintaining antiinflammatory IL-10 synthesis. These data indicate that UPM might promote an inflammatory milieu in part by inducing an IL-23-driven proinflammatory Th17 response. Restoring vitamin D sufficiency may counteract these UPM-driven effects without obliterating important homeostatic immune functions

    Genetics of the innate immune response in inflammatory bowel disease

    No full text

    Genetics of the innate immune response in inflammatory bowel disease

    No full text
    corecore