96 research outputs found

    LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation

    Get PDF
    Carefully orchestrated intercellular communication is an essential prerequisite for the development of multicellular organisms. In recent years, tunneling nanotubes (TNT) have emerged as a novel and widespread mechanism of cell-cell communication. However, the molecular basis of their formation is still poorly understood. In the present study we report that the transmembrane MHC class III protein LST1 induces the formation of functional nanotubes and is required for endogenous nanotube generation. Mechanistically, we found LST1 to induce nanotube formation by recruiting the small GTPase RalA to the plasma membrane and promoting its interaction with the exocyst complex. Furthermore, we determined LST1 to recruit the actin-crosslinking protein filamin to the plasma membrane and to interact with M-Sec, myosin and myoferlin. These results allow us to suggest a molecular model for nanotube generation. In this proposal LST1 functions as a membrane scaffold mediating the assembly of a multimolecular complex, which controls the formation of functional nanotubes

    Age, gender, insulin and blood glucose control status alter the risk of ischemic heart disease and stroke among elderly diabetic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed the effects of insulin therapy, age and gender on the risk of ischemic heart disease (IHD) and cerebrovascular accident (CVA) according to glycemic control.</p> <p>Methods and Results</p> <p>We performed a prospective cohort study (Japan Cholesterol and Diabetes Mellitus Study) of type 2 diabetes patients (n = 4014) for 2 years. The primary endpoint was the onset of fatal/non-fatal IHD and/or CVA, which occurred at rates of 7.9 and 7.2 per 1000 person-years, respectively. We divided diabetic patients into four groups based on age (≤ 70 and > 70) and hemoglobin A1C levels (≤ 7.0 and > 7.0%). Multiple regression analysis revealed that IHD was associated with high systolic blood pressure and low HDL-C in patients under 70 years of age with fair glycemic control and was associated with low diastolic blood pressure in the older/fair group. Interestingly, insulin use was associated with IHD in the older/poor group (OR = 2.27, 95% CI = 1.11-5.89; p = 0.026) and was associated with CVA in the older/fair group (OR = 2.09, 95% CI = 1.06-4.25; p = 0.028). CVA was associated with lower HDL-C and longer duration of diabetes in younger/poor glycemic control group. Results by stepwise analysis were similar. Next, patients were divided into four groups based on gender and diabetic control(hemoglobinA1C < or > 7.0%). Multiple regression analysis revealed that IHD was associated with high systolic blood pressure in male/fair glycemic control group, age in male/poor control group, and short duration of diabetic history in females in both glycemic control groups. Interestingly, insulin use was associated with IHD in the male/poor group(OR = 4.11, 95% CI = 1.22-8.12; p = 0.018) and with CVA in the female/poor group(OR = 3.26, 95% CI = 1.12-6.24; p = 0.02). CVA was associated with short duration of diabetes in both female groups.</p> <p>Conclusions</p> <p>IHD and CVA risks are affected by specific factors in diabetics, such as treatment, gender and age. Specifically, insulin use has a potential role in preventing IHD but may also be a risk factor for CVA among the diabetic elderly, thus revealing a need to develop improved treatment strategies for diabetes in elderly patients. The Japan Cholesterol and Diabetes Mellitus Study was formulated to evaluate them(Umin Clinical Trials Registry, clinical trial reg. no. UMIN00000516; <url>http://www.umin.ac.jp/ctr/index.htm</url>).</p

    Efficient overall water splitting in acid with anisotropic metal nanosheets

    Get PDF
    超高効率な水の電気分解を実現するナノシート状合金触媒を開発 --再生可能エネルギーによる水素社会実現へ大きく貢献--. 京都大学プレスリリース. 2021-02-17.Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reaction (OER). Here, we report a highly efficient catalyst in acid, that is, solid-solution Ru‒Ir nanosized-coral (RuIr-NC) consisting of 3 nm-thick sheets with only 6 at.% Ir. Among OER catalysts, RuIr-NC shows the highest intrinsic activity and stability. A home-made overall water splitting cell using RuIr-NC as both electrodes can reach 10 mA cm−2geo at 1.485 V for 120 h without noticeable degradation, which outperforms known cells. Operando spectroscopy and atomic-resolution electron microscopy indicate that the high-performance results from the ability of the preferentially exposed {0001} facets to resist the formation of dissolvable metal oxides and to transform ephemeral Ru into a long-lived catalyst

    LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation

    Get PDF
    Carefully orchestrated intercellular communication is an essential prerequisite for the development of multicellular organisms. In recent years, tunneling nanotubes (TNT) have emerged as a novel and widespread mechanism of cell-cell communication. However, the molecular basis of their formation is still poorly understood. In the present study we report that the transmembrane MHC class III protein LST1 induces the formation of functional nanotubes and is required for endogenous nanotube generation. Mechanistically, we found LST1 to induce nanotube formation by recruiting the small GTPase RalA to the plasma membrane and promoting its interaction with the exocyst complex. Furthermore, we determined LST1 to recruit the actin-crosslinking protein filamin to the plasma membrane and to interact with M-Sec, myosin and myoferlin. These results allow us to suggest a molecular model for nanotube generation. In this proposal LST1 functions as a membrane scaffold mediating the assembly of a multimolecular complex, which controls the formation of functional nanotubes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore