139 research outputs found

    FEM Analysis Considering stiffness of 3 Stepped Bracket Complex for ENGAKUJI SHARIDEN as a Historical Wooden Structure in Japan

    Full text link
    p. 476-488Engaku Temple has been built at Kamakura City nearby Yokohama in 1285. The SHARIDEN is one of the facitilies there in order to store the Buddha's bone and has been selected as Japanese national treasure. However, most of the original materials have been lost because of suffering from a fire in 1563. After that, the current SHARIDEN has been replaced by TAIHEI Temple which was also located in Kamakura. In the former study[1], the FEM model for SHARIDEN has been established as a space frame and the linear elastic analyses have also been executed. In the present study, the following targets will be prepared to analyze the structural behaviours in detail. (1) Reconfirm the coordinates of nodal points and member arrangement for the FEM model (2) The structural behaviours of 3 stepped bracket complex has been simulated with 3D FEM solid model to obtain the equivalent frame to the real bracket (3) Estimate more exact distribution of the vertical load on the top and lower roofs (4) Investigate the effect of the deterioration at the joints on the whole structural behaviours by considering bending springs arranged at the both ends of members. The numerical model has been assembled by CAD data originally created basing on the drawings edited by Kanagawa Prefecture. The number of unknowns reaches upto 13,000. The numerical model for 3 stepped bracket has also contains over 10,000 unknowns. Through above investigations, the structural features and several suggestions for reinforcements would be discussed for such an important structure.Takashima, H. (2009). FEM Analysis Considering stiffness of 3 Stepped Bracket Complex for ENGAKUJI SHARIDEN as a Historical Wooden Structure in Japan. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/653

    Japanese VLBI Network observations of radio-loud narrow-line Seyfert 1 galaxies

    Get PDF
    We performed phase-reference very long baseline interferometry (VLBI) observations on five radio-loud narrow-line Seyfert 1 galaxies (NLS1s) at 8.4 GHz with the Japanese VLBI Network (JVN). Each of the five targets (RXS J08066+7248, RXS J16290+4007, RXS J16333+4718, RXS J16446+2619, and B3 1702+457) in milli-Jansky levels were detected and unresolved in milli-arcsecond resolutions, i.e., with brightness temperatures higher than 10^7 K. The nonthermal processes of active galactic nuclei (AGN) activity, rather than starbursts, are predominantly responsible for the radio emissions from these NLS1s. Out of the nine known radio-loud NLS1s, including the ones chosen for this study, we found that the four most radio-loud objects exclusively have inverted spectra. This suggests a possibility that these NLS1s are radio-loud due to Doppler beaming, which can apparently enhance both the radio power and the spectral frequency.Comment: 8 pages, 2 figures, accepted for publication in PAS

    Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease

    Get PDF
    Huntington’s disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    A new phenotype of mitochondrial disease characterized by familial late-onset predominant axial myopathy and encephalopathy

    Get PDF
    Axial myopathy is a rare neuromuscular disease that is characterized by paraspinal muscle atrophy and abnormal posture, most notably camptocormia (also known as bent spine). The genetic cause of familial axial myopathy is unknown. Described here are the clinical features and cause of late-onset predominant axial myopathy and encephalopathy. A 73-year-old woman presented with a 10-year history of severe paraspinal muscle atrophy and cerebellar ataxia. Her 84-year-old sister also developed late-onset paraspinal muscle atrophy and generalized seizures with encephalopathy. Computed tomography showed severe atrophy and fatty degeneration of their paraspinal muscles. Their mother and maternal aunt also developed bent spines. The existence of many ragged-red fibers and cytochrome c oxidase-negative fibers in the biceps brachii muscle of the proband indicated a mitochondrial abnormality. No significant abnormalities were observed in the respiratory chain enzyme activities; however, the activities of complexes I and IV were relatively low compared with the activities of other complexes. Sequence analysis of the mitochondrial DNA from the muscle revealed a novel heteroplasmic mutation (m.602C>T) in the mitochondrial tRNAPhe gene. This familial case of late-onset predominant axial myopathy and encephalopathy may represent a new clinical phenotype of a mitochondrial disease

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore