287 research outputs found

    Asymmetric Solar Polar Field Reversals

    Full text link
    The solar polar fields reverse because magnetic flux from decaying sunspots moves towards the poles, with a preponderance of flux from the trailing spots. Let us assume that there is a strong asymmetry in the sense that all activity is in the Northern Hemisphere, then that excess flux will move to the North Pole and reverse that pole, while nothing happens in the South. If later on, there is a lot of activity in the South, then that flux will help reverse the South Pole. In this way, we get two humps in solar activity and a corresponding difference in time of reversals. Such difference was first noted by Babcock (1959) from the very first observation of polar field reversal just after the maximum of the strongly asymmetric solar cycle 19. At that time, the Southern Hemisphere was most active before sunspot maximum and the South Pole duly reversed first, followed by the Northern Hemisphere more than a year later, when that hemisphere was most active. Solar cycles since then have had the opposite asymmetry, with the Northern Hemisphere being most active early in the cycle. Polar field reversals for these cycles have as expected happened first in the North. This is especially noteworthy for the present solar cycle 24. We suggest that the association of two peaks of solar activity when separated by hemispheres with correspondingly different times of polar field reversals is a general feature of the cycle

    Areas of Polar Coronal Holes from 1996 Through 2010

    Get PDF
    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010

    Inferring Maps of the Sun's Far-side Unsigned Magnetic Flux from Far-side Helioseismic Images using Machine Learning Techniques

    Full text link
    Accurate modeling of the Sun's coronal magnetic field and solar wind structures require inputs of the solar global magnetic field, including both the near and far sides, but the Sun's far-side magnetic field cannot be directly observed. However, the Sun's far-side active regions are routinely monitored by helioseismic imaging methods, which only require continuous near-side observations. It is therefore both feasible and useful to estimate the far-side magnetic-flux maps using the far-side helioseismic images despite their relatively low spatial resolution and large uncertainties. In this work, we train two machine-learning models to achieve this goal. The first machine-learning training pairs simultaneous SDO/HMI-observed magnetic-flux maps and SDO/AIA-observed EUV 304AËš\r{A} images, and the resulting model can convert 304AËš\r{A} images into magnetic-flux maps. This model is then applied on the STEREO/EUVI-observed far-side 304AËš\r{A} images, available for about 4.3 years, for the far-side magnetic-flux maps. These EUV-converted magnetic-flux maps are then paired with simultaneous far-side helioseismic images for a second machine-learning training, and the resulting model can convert far-side helioseismic images into magnetic-flux maps. These helioseismically derived far-side magnetic-flux maps, despite their limitations in spatial resolution and accuracy, can be routinely available on a daily basis, providing useful magnetic information on the Sun's far side using only the near-side observations.Comment: Accepted by Ap

    On the knee in the energy spectrum of cosmic rays

    Get PDF
    The knee in the all-particle energy spectrum is scrutinized with a phenomenological model, named poly-gonato model, linking results from direct and indirect measurements. For this purpose, recent results from direct and indirect measurements of cosmic rays in the energy range from 10 GeV up to 1 EeV are examined. The energy spectra of individual elements, as obtained by direct observations, are extrapolated to high energies using power laws and compared to all-particle spectra from air shower measurements. A cut-off for each element proportional to its charge Z is assumed. The model describes the knee in the all-particle energy spectrum as a result of subsequent cut-offs for individual elements, starting with the proton component at 4.5 PeV, and the second change of the spectral index around 0.4 EeV as due to the end of stable elements (Z=92). The mass composition, extrapolated from direct measurements to high energies, using the poly-gonato model, is compatible with results from air shower experiments measuring the electromagnetic, muonic, and hadronic components. But it disagrees with the mass composition derived from X_max measurements using Cerenkov and fluorescence light detectors.Comment: 30 pages, 21 figures, 9 tables, accepted by Astroparticle Physic

    Optimal Strouhal number for swimming animals

    Full text link
    To evaluate the swimming performances of aquatic animals, an important dimensionless quantity is the Strouhal number, St = fA/U, with f the tail-beat frequency, A the peak-to-peak tail amplitude, and U the swimming velocity. Experiments with flapping foils have exhibited maximum propulsive efficiency in the interval 0.25 < St < 0.35 and it has been argued that animals likely evolved to swim in the same narrow interval. Using Lighthill's elongated-body theory to address undulatory propulsion, it is demonstrated here that the optimal Strouhal number increases from 0.15 to 0.8 for animals spanning from the largest cetaceans to the smallest tadpoles. To assess the validity of this model, the swimming kinematics of 53 different species of aquatic animals have been compiled from the literature and it shows that their Strouhal numbers are consistently near the predicted optimum.Comment: 21 pages, 6 figure

    Short-term variations in response distribution to cortical stimulation

    Get PDF
    Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change occurring at a given location with stimulation would help predict the distribution of responses elsewhere over the cortex to stimulation at that given location. We did this by studying cortical afterdischarges following electrical stimulation of the cortex in awake humans undergoing evaluations for brain surgery. Response occurrence and location could change within seconds, both nearby to and distant from stimulation sites. Responses might occur at a given location during one trial but not the next. They could occur at electrodes adjacent or not adjacent to those directly stimulated or to other electrodes showing afterdischarges. The likelihood of an afterdischarge at an individual site after stimulation was predicted by spontaneous electroencephalographic activity at that specific site just prior to stimulation, but not by overall cortical activity. When stimulation at a site interrupted motor, sensory or language function, afterdischarges were more likely to occur at other sites where stimulation interrupted similar functions. These results show that widespread dynamic changes in cortical responses can occur in intact cortex within short periods of time, and that the distribution of these responses depends on local brain states and functional brain architecture at the time of stimulation. Similar rapid variations may occur during normal intracortical communication and may underlie changes in the cortical organization of function. Possibly these variations, and the occurrence and distribution of responses to cortical stimulation, could be predicted. If so, interventions such as stimulation might be used to alter spread of epileptogenic activity, accelerate learning or enhance cortical reorganization after brain injury

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naĂŻve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    Automated Detection of EUV Polar Coronal Holes During Solar Cycle 23

    Get PDF
    A new method for automated detection of polar coronal holes is presented. This method, called perimeter tracing, uses a series of 171, 195, and 304 \AA\ full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar coronal holes as they appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations caused by the emitting plasma of the various wavelengths by taking measurements at the solar limb. Perimeter tracing also allows for the polar rotation period to emerge organically from the data as 33 days. We have called this the Harvey rotation rate and count Harvey rotations starting 4 January 1900. From the measured perimeter, we are then able to fit a curve to the data and derive an area within the line of best fit. We observe the area of the northern polar hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the total solar surface area and about 3.6% in 2007. The area of the southern polar hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both the north and south polar hole areas are no more than 15% smaller now than they were at the beginning of cycle 23. This compares to the polar magnetic field measured to be about 40% less now than it was a cycle ago.Comment: 18 pagers, 7 figures, accepted to Solar Physic
    • …
    corecore