668 research outputs found

    Mixed-State Quasiparticle Spectrum for d-wave Superconductors

    Full text link
    Controversy concerning the pairing symmetry of high-TcT_c materials has motivated an interest in those measurable properties of superconductors for which qualitative differences exist between the s-wave and d-wave cases. We report on a comparison between the microscopic electronic properties of d-wave and s-wave superconductors in the mixed state. Our study is based on self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes equations for phenomenological BCS models which have s-wave and d-wave condensates in the absence of a magnetic field. We discuss differences between the s-wave and the d-wave local density-of-states, both near and away from vortex cores. Experimental implications for both scanning-tunneling-microscopy measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques

    Proximity effect and strong coupling superconductivity in nanostructures built with an STM

    Full text link
    We present high resolution tunneling spectroscopy data at very low temperatures on superconducting nanostructures of lead built with an STM. By applying magnetic fields, superconductivity is restricted to length scales of the order of the coherence length. We measure the tunneling conductance and analyze the phonon structure and the low energy DOS. We demonstrate the influence of the geometry of the system on the magnetic field dependence of the tunneling density of states, which is gapless in a large range of fields. The behavior of the features in the tunneling conductance associated to phonon modes are explained within current models.Comment: 4 figures, 4 page

    Spectral Properties of Quasiparticle Excitations Induced by Magnetic Moments in Superconductors

    Full text link
    The consequences of localized, classical magnetic moments in superconductors are explored and their effect on the spectral properties of the intragap bound states is studied. Above a critical moment, a localized quasiparticle excitation in an s-wave superconductor is spontaneously created near a magnetic impurity, inducing a zero-temperature quantum transition. In this transition, the spin quantum number of the ground state changes from zero to 1/2, while the total charge remains the same. In contrast, the spin-unpolarized ground state of a d-wave superconductor is found to be stable for any value of the magnetic moment when the normal-state energy spectrum possesses particle-hole symmetry. The effect of impurity scattering on the quasiparticle states is interpreted in the spirit of relevant symmetries of the clean superconductor. The results obtained by the non-self-consistent (T matrix) and the self-consistent mean-field approximations are compared and qualitative agreement between the two schemes is found in the regime where the coherence length is longer than the Fermi length.Comment: to appear in Phys. Rev. B55, May 1st (1997

    Rheological Chaos in a Scalar Shear-Thickening Model

    Get PDF
    We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress \sigma is driven at a constant shear rate \dot\gamma and relaxes by two parallel decay processes: a nonlinear decay at a nonmonotonic rate R(\sigma_1) and a linear decay at rate \lambda\sigma_2. Here \sigma_{1,2}(t) = \tau_{1,2}^{-1}\int_0^t\sigma(t')\exp[-(t-t')/\tau_{1,2}] {\rm d}t' are two retarded stresses. For suitable parameters, the steady state flow curve is monotonic but unstable; this arises when \tau_2>\tau_1 and 0>R'(\sigma)>-\lambda so that monotonicity is restored only through the strongly retarded term (which might model a slow evolution of material structure under stress). Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not chaos, persists even for the case \tau_1\to 0. A similar generic mechanism might also arise in shear thinning systems and in some banded flows.Comment: Reference added; typos corrected. To appear in PRE Rap. Com

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore