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We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in
which the shear stress is driven at a constant shear rageand relaxes by two parallel decay processes:
a nonlinear decay at a nonmonotonic raRc;) and a linear decay at ratdo,. Here o (t)
:rlle i) },a(t’)exp{—(t—t’)/rlvﬂdt’ are two retarded stresses. For suitable parameters, the steady state flow
curve is monotonic but unstable; this arises wheh 7, and 0>R’ (o) > —\ so that monotonicity is restored
only through the strongly retarded terfwhich might model a slow evolution of the material structure under
stres$. Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not
chaos, persists even for the casg~0. A similar generic mechanism might also arise in shear thinning
systems and in some banded flows.

DOI: 10.1103/PhysReVE.66.025202 PACS nunier05.45.Ac, 83.60.Rs, 83.10.Gr

Rheochaos can be defined as the occurrence of macreqe stress and strain rate tensassand y) ; nonetheless they
scopic chaog1] in a viscoelastic material at a negligible contain an infinite number of degrees of freedom, corre-
Reynolds number. With the neglect of inertia that this im-sponding to the distribution of local strain variables for dif-
plies, the nonlinearity must come not from the advection offerent mesoscopic elements. This makes them complex to
momentum(as in the Navier-Stokes turbulendsut from the  analyze.
constitutive behavior of the material, which may include |n this paper we propose closely related but much simpler
strong memory effects. Likewise, for the chaos to be macromodels in which there is only one degree of freedtitre
scopically observablfor example in time series data on the <o stress) whose time evolution at constant strain rate
stress measured a_lt a fixed strain rate, or vice versa, in a bu governed by a simple constitutive equation with retarded
sampl¢ a mechanism must be present that goes beyond the,q noniinear features. The simplest such model combines a
microscale chaos known to be present in, e.g., colloidaf,pjinear instantaneous relaxation rate for strégsosen

Stokes rovv[Z].. for rheoch incl icell ‘nonmonotoni¢ with a linear but retarded relaxation. For a
Strong candidates for rheochaos include micellar materigingje exponential retardation kernel, its dynamics can be

als[3], dense lamellar phasps], and also dense suspensions .,y jetely understood: it shows spontaneous oscillation in a
where erratic stress response at fixed strain (atevice  raqion of the flow curve with a positive slope, but no chaos.
versa is widespread but poorly documentesee, e.g., Ref.  niq s qualitatively like the mesoscopic model of REfO]

.[5])' It is no§ ygt clear whether §pat|al as well as temporal( Ithough that model exhibits oscillations at a constant im-
inhomogeneity is present for all instances of rheochaos, anfseq stress rather than strain yate particular, the insta-

if so to what extent. This could range from a shear-bandeqljji is associated with a negative slope on the “bare” flow
flow in which the interface between the bands of the fast an urve (before the retarded term is added second, similar

slow flowing materials is unsteady in tinas suspected in 546 in which the nonlinear relaxation is itself delayed,
micelles [3,6]) through to fully developed “elastic turbu- shows chaos.

lence” as recently reported in polymer solutions near the \ye first examine the simplest model alluded to above.

overlap threshold[7]. Spatial inhomogeneities are also 15 is defined by the equation

known to occur in shear-thickening colloid solutiof&8].

However, the closely related phenomenon of director chaos a(t)= '7_ R(o)—\oy, )

in sheared nematics has been studied theoretically and does

not seem to require spatial inhomogeng®y. In the present  where o,(t)=f' .M (t—t')o(t') dt’ is a retarded stress

state of understanding, a theoretical search for temporaindMm,(t) is a memory kernel whose integral is unity. The

rheochaos in spatially homogenous models remains justifiedirst term on the right-hand side of this equation means that,
Recent work by the authors has studied the onset of temn the absence of relaxation, stress increases linearly with

poral instability in spatially homogeneous mesoscopic modstraining (the elastic constant is set to unitya Hookean

els of the shear-thickening type0]. One interesting predic- solid. The second term describes the instantaneous decay of

tion was that such instability could arise in a system wherestress at rat&(o), for example, through “hops” or plastic

the steady state flow curve(y) is monotonic[10]. This  rearrangement of mesoscopic eleménésurning these to an

contrasts with the conventional instability to spatial inhomo-unstrained stajewith jump rateR/o. Unlike in the meso-

geneity in the form of shear bands: this is always associatesicopic models of Ref.10], no attempt is made to track the

with regions of negative slope on the flow curfEl-13. dynamics of individual elements. The third term is also a

The mesoscopic models §10] are not fully tensorial but decay term, but describes retarded relaxation. This could rep-

work with a single(spatially uniform component of each of resent “delayed jumps” which, perhaps because they involve
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a cooperative motion of many elements, take a distribution® 3
of finite times to accomplistigoverned by the kerneVl,).

More generally, a retarded term could represent some othe ,5|

slow structural reorganization of the material in response to

stress. 2l

For example, one could have a model of instantaneous _.
jumps but with a “fluidity” or jump rate that itself adapts
slowly to stres$14]. In this context it might be more natural
to have a nonlinear retarded term such as

1 5

o=y—R(0)—\o,o0. (2 Se

05 |

However, this gives qualitatively the same instability as de-
scribed below for Eq(1) [15]; we retain the linear version, 0
for simplicity, below.

Solving Eq.(1) in the steady state gives immediately the
flow curve, or rather its inverse,

y=R(o)+\o. (3)

The interesting case is wheR(o) is nonmonotonic but
R(o) + N\ o is monotonic. Then the flow curve is monotonic,
but only because of the retarded contribution to the jumpg
rate. One might suspect that a sufficiently sluggish retardec
contribution might fail to correct the underlying instability in
the region wher®’ (o) is negative: over short timescales the
system appears to be unstable with respect to shear bandirg
but at long time scales it is not. Here, the time scales are
measured relative to the strain rate at whirfrr) in Eq. (3)
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first becomes nonmonotonic; we choose units so that this is
(b
O(1).
We analyze the case of a single exponential kerkg, FIG. 1. (8 The bare flow curvey=R(o) (light line) and the

_ 71 . . .

=7, exg—(t-t")/7,]. As is easily checked, for this kernel fina| fiow curve(heavy ling in the model of Eq(1). Parameters are
Eq. (1) can be replaced by a differential equation of second, =g, =10, andR(¢)=0.60°—3.303+50. The region of in-
order. Differentiating Eq(1) with respect tot, and noting  stability o, <o<o is shown, wherer; ~0.799 ando ~1.631,

that o= (0 — 07,)/ 75, we obtain immediately corresponding toy, ~18.487 andy, ~33.382. Note that for our
- . choice of parameters;; almost coincide with the turning points of
o=—(dVldo) —&(o)a, (4) R (b) Stress time seriegsame parameter valuest (from bottom to

which effectively describes a particle of unit mass in a one

top) y=18.49, y=30, andy=33.38.

dimensional potentiaV’ with damping constarg. Here in which the positive damping at large amplitudes balances
the antidamping near the minimum.

4 , , ) . Examples of the “bare” flow curve, the final flow curve,
V(o) = fo R(o")do’ +\o%/2= yo, ®)  and the region of the instability are shown in Figa)l Fig-
ure 1(b) shows a typical time series of the stress just inside,
((o)=R'(o)+ 1. (6) and well within, the unstable region. The limits of this re-

] ] gion, af , are Hopf bifurcation points where there is an onset
As vy is varied, the steady state flow curw¢y), as given by  of finite frequency sinusoidal oscillations with an amplitude
Eq. (3), is recovered as the solution ®f (c=0). The sta- varying as|'y— :}/c|l/2-
bility of the steady state solution requires that two further oy choice of an exponential kernel is nongeneric: most
conditions are satisfied. The first 6'(¢)>0 (so that the  iyteqral kernels are not equivalent to any finite-order differ-
effective potential has a minimum not a maximurfihis i ential equatior{16]. However, the above argument gives a
equivalent toado/dy>0 which is the usual criterion to avoid generic mechanism of instability. If the flow curve is mono-
shear banding. However, the stability also requires £fa) tonic only because of a retarded tefmr \<R'(0)<0],
is positive at the minimum o¥. WhenR'(o) in Eq. (6) is  then temporal instability survives if the retardation time is
negative, this is only satisfied if the retardation timgis  too long. Its presence does not depend on details of the ker-
sufficiently short. When not satisfied, one has antidamping atel, but what it leads to might do so: in particular, chaos is
the minimum ofV so that small velocity fluctuations are impossible in a second-order systgd®6] such as Eq(4).
amplified; this is reminiscent of a van der Pol oscilldtb8]. = However, our finding of spontaneous oscillation but not
Velocity fluctuations will grow until a limit cycle is reached chaos appears to be structurally stable: we were unable to
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FIG. 2. (a) Upper plot: the period of stable orbits as a function of strain ateound the unstable region of the flow curve of Fig. 1, for
the model of Eq(7) with 7,=0.5 and the other parameters as in Fig. 1. Lower plot: Lyapunov exponents for trajectories, shpwihg
=\, in the chaotic regiongb) Orbits projected onto theof,, ) plane for variousy showing the period-doubling cascade with periods 1,
2, 4, 8, 16, and 32(c) The strange attractor ins(;,o,, o) space fory=20 over a time period & 10°<t<10® (arb. units.

find chaos withM, taken as the sum of two exponentials where the monotonicity of the flow curystill given by Eq.
(which gives a third-order dynamical system for which chaog3)] is restored only via the more retarded one of the two
is allowed. relaxation terms. While there is no longer a simple interpre-
In that case, what needs to be added to the model of Eqation in terms of an effective potential or a damping func-
(1) to give temporal chaos rather than just spontaneous osion, the generic instability of the previous model remains.
cillation? So far, the Simplest variant we have found thatBut now, within the unstable region, we find a period dou-
definitely shows chaos is the following: bling cascade leading to chaos. Figur@)2shows, for a
()= y—R(0y) —\o, @) specified set of model parametfars, the period and Lyapunov
exponents\;=\,=\3 as a function ofy (\;>0 means that
where the stress in the nonlinear term,, is now also re- nearby trajectories exponentially separ@ld]); Fig. 2(b)
tarded. The steady state flow curve is the same as that for Eghows a series of period-doubling orbits in the, (o) plane
(1). For simplicity, we choose a single exponential kerneland Fig. Zc) shows the strange attractor inr{,o5,0)
here too:o(t)=[o(t') 7, texd —(t—t')/m]dt’. To main-  space. Its Lyapunov dimensioB,y,,=2+\1/|\;| varies
tain continuity of interpretation with the simpler version of with the parameters but is slightly greater than 2, typically
the model, we choose;<1<7,. We study the situation 2.0<Dy,,<2.1.
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Physically it is not clear to us yet why the retardation of interpretation, might describe a preexisting shear-banded

the nonlinear termas well as the linear oneseems neces-
sary to get chaos out of Eq7); presumably, however, this

flow, whose stability remains unclear in many ca§2@].
The simplest scenario would ascribe a single coordinate to

adds something which is missing even from the mesoscopigdescribe the bandg.g., the position of the interface between
model of Ref[10] (where chaos remained absent despite théhem, assumed flatand seek to develop equations for its

infinite order of the systejn Attempts to associate the re-

time evolution. Chaotic behavior of such an interface, rather

tarded stresses in this model with, say, higher moments of théan of a spatially homogeneous stress, might be the expla-

distribution of local strains in the model of R¢fL0] (where
the first moment is the instantaneous strelsave so far

nation of rheochaos seen in various micellar systgshsin
the case where one of the bands is a static gel, empirical

proved unconvincing. A more detailed study is left for future models such as those proposed in RE24] have met with

work.

some success at explaining the obserithdugh not entirely

We conclude with a broader discussion. The key idea i$teady[22]) dependence of stress on the strain rate when

that of a flow curvefor spatially homogeneous stateghose

averaged across such a banded flow. Such models involve

monotonicity is rescued only by a retarded contribution; ifequations such as=f(h)—1/o- whereh is the width of a
too much retarded, this does not restore temporal stabilitghear bandf is a nonlinear term arising from the difference
because the system continues to amplify perturbations ovén concentrations of the two bands, axds the stres$21].
short time scales. Although the equations involved will lookUnder controlled strain rate conditiofsay 1/o is linear in
rather different, very similar physics could arise in materialsh and the equation is not dissimilar to E@) without retar-
of the shear-thinning type where shear banding is presemation. If a slow process can be identifigabssibly concen-

[6,12,19 or narrowly avoided19]. It might be very interest-

tration equilibratio, then a retarded version of this type of

ing to look more closely in shear-thinning micellar systemsequation could share the generic instability of the models
where, by varying density and temperature, one can arranggiscussed above.

a material whose flow curve is only just monotorits].

Similar studies in colloids close to the transition from con-

tinuous to discontinuous shear thickenirid would also be
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Quite similar equations, but with different variables andinitiated.
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