33 research outputs found

    Not all farms are created equal: Shady African cocoa farms promote a richer bat fauna

    Get PDF
    Bats provide important pest suppression services with economic value to cocoa farmers, yet the impact of cocoa farm management on bat diversity metrics is still poorly understood. This is especially important if we consider that Afrotropical cocoa farms supply 68 % of the world's chocolate market, with expected increases in production in the forthcoming decades. In this study, we investigated for the first time how bat abundance, richness and diversity varied between African cocoa farms with different levels of shade tree cover, shade tree communities and cocoa characteristics. We found that shade tree cover and shade tree height were the main drivers associated with an increase of Shannon diversity, and abundance and richness of insectivores. Frugivorous and nectarivorous bats were positively associated with the presence of planted shade trees, but richness varied with the size of shade trees. The insectivorous Hipposideros fuliginosus was only present in high shade farms, being captured 51 times only in this shade system, while the frugivorous Myonycteris angolensis was associated with low shade farms. Our findings show that indeed not all farms are created equal, with high shade farms with large, tall forest shade trees (i.e., containing key plant resources) having richer bat communities. Therefore, policymakers seeking to conserve wildlife within cocoa farming systems should adopt cocoa management systems like those mentioned above and promote a combination of forest and planted shade trees to be able support a rich community of insectivorous, frugivorous and nectarivorous bats and maintain their associated ecosystems services

    Diversity for Restoration (D4R): guiding the selection of tree species and seed sources for climate-resilient restoration of tropical forest landscapes

    Get PDF
    1. At the start of the UN Decade of Ecosystem Restoration (2021–2030), the restoration of degraded ecosystems is more than ever a global priority. Tree planting will make up a large share of the ambitious restoration commitments made by countries around the world, but careful planning is needed to select species and seed sources that are suitably adapted to present and future restoration site conditions and that meet the restoration objectives. 2. Here we present a scalable and freely available online tool, Diversity for Restoration (D4R), to identify suitable tree species and seed sources for climate-resilient tropical forest landscape restoration. 3. The D4R tool integrates (a) species habitat suitability maps under current and future climatic conditions; (b) analysis of functional trait data, local ecological knowledge and other species characteristics to score how well species match the restoration site conditions and restoration objectives; (c) optimization of species combinations and abundances considering functional trait diversity or phylogenetic diversity, to foster complementarity between species and to ensure ecosystem multifunctionality and stability; and (d) development of seed zone maps to guide sourcing of planting material adapted to present and predicted future environmental conditions. We outline the various elements behind the tool and discuss how it fits within the broader restoration planning process, including a review of other existing tools. 4. Synthesis and applications. The Diversity for Restoration tool enables non-expert users to combine species traits, environmental data and climate change models to select tree species and seed sources that best match restoration site conditions and restoration objectives. Originally developed for the tropical dry forests of Colombia, the tool has now been expanded to the tropical dry forests of northwestern Peru–southern Ecuador and the countries of Burkina Faso and Cameroon, and further expansion is underway. Acknowledging that restoration has a wide range of meanings and goals, our tool is intended to support decision making of anyone interested in tree planting and seed sourcing in tropical forest landscapes, regardless of the purpose or restoration approachISSN:0021-8901ISSN:1365-266

    Above-ground biomass and structure of 260 African tropical forests.

    Get PDF
    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40-50 per cent of terrestrial vegetation carbon(1). However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests(2). Owing to climatic and soil changes with increasing elevation(3), AGC stocks are lower in tropical montane forests compared with lowland forests(2). Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network(4) and about 70 per cent and 32 per cent higher than averages from plot networks in montane(2,5,6) and lowland(7) forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa(8). We find that the low stem density and high abundance of large trees of African lowland forests(4) is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse(9,10) and carbon-rich ecosystems. The aboveground carbon stock of a montane African forest network is comparable to that of a lowland African forest network and two-thirds higher than default values for these montane forests.Peer reviewe

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    The number of tree species on Earth.

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    Mixed-forest species establishment in a monodominant forest in Central Africa: Implications for tropical forest invasibility

    Get PDF
    Background: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings: We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6x1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance: Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. © 2014 Peh et al
    corecore