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We report above-ground biomass (AGB), basal area, stem den-

sity and wood mass density estimates from 260 sample plots

(mean size: 1.2 ha) in intact closed-canopy tropical forests

across 12 African countries. Mean AGB is 395.7 Mg dry

mass ha21 (95% CI: 14.3), substantially higher than Amazo-

nian values, with the Congo Basin and contiguous forest

region attaining AGB values (429 Mg ha21) similar to those

of Bornean forests, and significantly greater than East or

West African forests. AGB therefore appears generally

higher in palaeo- compared with neotropical forests. However,

mean stem density is low (426+11 stems ha21 greater than or

equal to 100 mm diameter) compared with both Amazonian

and Bornean forests (cf. approx. 600) and is the signature struc-

tural feature of African tropical forests. While spatial

autocorrelation complicates analyses, AGB shows a positive

relationship with rainfall in the driest nine months of the

year, and an opposite association with the wettest three

months of the year; a negative relationship with temperature;

positive relationship with clay-rich soils; and negative relation-

ships with C : N ratio (suggesting a positive soil phosphorus–

AGB relationship), and soil fertility computed as the sum of

base cations. The results indicate that AGB is mediated by

both climate and soils, and suggest that the AGB of African

closed-canopy tropical forests may be particularly sensitive

to future precipitation and temperature changes.
1. Introduction
Comparative studies of the above-ground biomass (AGB) of tro-

pical forests exist for South America [1–3] and Asia [4] but not
for Africa. Thus, some ostensibly simple questions remain unan-

swered: how much AGB does an average structurally intact

African tropical forest store? Where in Africa is biomass lower

or higher; and what controls this spatial variation? How do

African forest AGB values compare with those on other conti-

nents? Here, we collate standardized AGB data from across

tropical Africa to provide a first answer to these broad questions.

Understanding the spatial patterns of biomass in African

forests is important on at least four counts. First, to provide

insights into how tropical forests function. Africa provides a

useful contrast with Amazonia in terms of separating possible

causal factors underlying AGB variation, as unlike Amazonia,

Africa does not possess a strong east–west gradient in soil

fertility that coincides with other gradients such as mean

annual air temperature [1,3,5]. Therefore, studying African for-

ests may assist in developing a more coherent understanding

of tropical biomass variation and the relative contributions of

climate, soils and disturbance. Additionally, recent work

suggests some systematic neo- versus palaeotropical differ-

ences in forest structure (i.e. South American versus Africa/

Asia forests; [6]), and perhaps AGB varies similarly, as some

recent analyses suggest [7]. Second, biomass estimates provide

information on ‘emissions factors’ for estimating carbon losses

from deforestation and forest degradation [8]. Third, they can

assist calibrating and validating carbon mapping exercises

[9]. Fourth, modelling tropical forests requires data to both

develop and test representations of African forests and their

response to a changing environment [10].

The live biomass density of a tropical forest is the sum

of the biomass of all living organisms per unit area. This

is determined by both the rate of fixation of carbon into

root, stem, branch and leaf material per unit area, and

how long that fixed material is resident as living mass in

each of those biomass pools. Hence, both the net primary

productivity (NPP) and the biomass residence time (tW,

1/biomass turnover rate) determine a forests’ AGB. In prac-

tice, for old-growth forests the turnover times of fine root

and leaf material are much shorter (approx. 1–2 years) than

that of woody biomass (approx. 50–100 years), and hence

total AGB is almost entirely determined by the rate of pro-

duction of woody biomass (NPPWOOD; some 20–40% of NPP

[11]) and its residence time. Thus, all other things being equal,

a forest with higher NPPWOOD should have greater AGB.

Similarly, a forest with a greater tW will accumulate NPPWOOD

over more years, leading to greater AGB. Thus, a priori, resource

availability should affect AGB via NPPWOOD, and the size–

frequency distribution of disturbance events should affect

AGB via tw. These disturbance events may be endogenous,

for example, related to species life-history traits, soil physical

characteristics or biotic interactions (from plant disease to

foraging elephants), or exogenous, for example via climatic

extremes, or some combination of the two. A third possible

class of effect is associated with the species pool available

in a given forest that may systematically elevate or depress

AGB via effects on either NPPWOOD or tw. This may be impor-

tant given evidence of the relationship between geology

and tree species distributions [12,13], and contribute to the

high AGB in Southeast Asian forests dominated by Dipterocar-

paceae [4,6]. These factors may be nonlinear (soil depth

beyond a certain level may have no effect on tw), co-correlated

(precipitation and soil fertility [14]) or interacting (species grow-

ing on high-fertility soils may have shorter lifespans, shortening

tw [3]). A recent evaluation of Amazonian AGB patterns
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highlights the complexity of explaining spatial patterns of

AGB variation [3].

The evidence for the effects of individual drivers of

spatial differences in AGB within tropical forests is limited,

but allows hypotheses to be articulated. Each forest grows on

a particular soil under a particular climatic regime. In terms of

climate, theory suggests that AGB will be lower when NPP is

reduced in forests experiencing a dry season where growth

is reduced or ceases owing to a limit in water availability, as

has been documented [1,2,4]. Although when accounting

for the spatial autocorrelation, this effect on NPP appeared

much reduced for Amazon forests [3]. Conversely, extremely

wet forests have lower AGB than moist forests [15], perhaps

attributable to a lower NPP owing to the cloudiness associa-

ted with high rainfall reducing incoming insolation rates

[14,16,17]. Hence, high wet-season rainfall may be associated

with low AGB. However, simple wet/dry season comparisons

are more complex in Africa as the movement of the intertropical

convergence zone generates two wet and two dry seasons

annually over much of Central Africa, and tropical forests

across Africa are on average drier than those in the Americas

of Asia [18].

Low air temperature may restrict the efficiency of photo-

synthesis, hence higher air temperatures in the coolest part

of the year may be associated with higher AGB. By contrast,

forests growing under higher air temperatures may have

higher respiration costs, and if photosynthesis is not higher

(or reduced because of higher atmospheric water vapour

pressure deficits [19]), NPP may be lower and hence AGB—

other things being equal—would be lower. Therefore, forests

growing under very high air temperature may be generally

associated with a lower AGB. Although Amazonian AGB

was not significantly related to mean annual air temperature,

wood production was, however, negatively associated with it

[3], and in Asia most of the best models relating AGB to

environmental conditions do not include temperature [4],

suggesting any AGB–temperature relationship may be rela-

tively weak, or is being masked by other covarying factors.

We therefore consider both temperature and precipitation

as potential drivers of spatial variation in AGB.

The impact of soils on AGB is likely to be complex.

Developmentally older soils tend to provide fewer of the

nutrients plants require than do younger soils, and hence

are poorer substrates for plant growth, but conversely are

often deeper and structurally provide improved water reten-

tion, and hence are better for plant growth and biomass

support [5,14]. Thus, a separation of plant-relevant soil

physical and chemical characteristics is necessary to disentan-

gle the likely opposing impacts of nutrient availability on

AGB via NPPWOOD and physical soil characteristics via tw.

Additionally, it is uncertain whether it is phosphorus and/

or other nutrients that are the most important fertility-related

soil parameters affecting NPPWOOD. Furthermore, soil data

are often unavailable for forest inventory plots, and methods

of soil analysis may also be different: all of which complicate

analyses of soil effects on tropical forest function. Based

on available evidence, we predict structurally poor soils,

including coarse-textured sandy soils, to be associated with

lower AGB. The predicted response to the higher availabi-

lity of soil nutrients is ambiguous, as NPPWOOD is likely to

be higher, hence higher AGB might be expected, yet such

forest stands may become dominated by species with low

wood mass density (WMD) which tend to have shorter
lifespans (shorter tW), and hence a lower AGB. Positive

AGB–nutrient relationships from Borneo imply the increase

in NPPWOOD dominates there [4], whereas in Amazonia,

the decline in tW appears to dominate [1,3]. A Central

African study suggests that higher NPPWOOD and lower

tW likely balance each other in terms of their impact on

AGB [20].

The role of exogenous disturbance events in determin-

ing AGB is also difficult because such events are difficult to

characterize ex posto facto. However, we may get insights

in three ways. First, stem density provides insights as low dis-

turbance rates over preceding decades are likely to result in

greater biomass allocated to fewer stems, because when

exogenous disturbance events are rare, larger older trees

should dominate, shading out and thus reducing the growth

rates and survival probability of smaller trees (‘self thinning’).

Second, habitat fragmentation may elevate disturbance rates,

altering AGB patterns in remaining forest [21]. Third, commu-

nity-average WMD should be lower in more frequently

disturbed and hence dynamic forests comprising greater num-

bers of earlier successional species [22]. Therefore, we report on

all of AGB, basal area (BA), stand WMD and stem density for

our 260 forest monitoring plots encompassing West, Central

and East Africa, also investigating their relationship with soil,

climate and fragmentation variables. Analytically, we use a

series of statistical techniques to attempt to build a synthetic

understanding of the likely controls on forest AGB across

tropical Africa.
2. Methods
(a) Data collection and processing
Forest inventory plot data, collected and collated as part of the

African Tropical Rainforest Observatory Network (AfriTRON;

www.afritron.org), were selected for analysis when conforming

to the following criteria: closed-canopy tropical forest; geo-

referenced; all trees greater than or equal to 100 mm diameter

measured; greater than or equal to 0.2 ha; majority of stems

identified to species; old-growth and structurally intact, i.e. not

impacted by recent selective logging or fire; mean annual air temp-

erature greater than or equal to 208C and greater than or equal to

1000 mm mean annual precipitation (from WorldClim [23]).

Three remaining plots previously characterized by researchers as

‘montane’ forest were excluded. In all plots, tree diameter was

measured at 1.3 m along the stem from the ground, or above but-

tresses, if present. The 260 plots (total, 312.5 ha) that conformed

to the criteria comprised 132 899 stems, of which 85% were ident-

ified to species and 96% to genera. Further details are given in

the electronic supplementary material.

For each plot, we calculated (i) stem density greater than or

equal to 100 mm diameter per ha; (ii) the BA (sum of the cross-

sectional area at 1.3 m, or above buttresses, of all live trees) in

m2 ha21; (iii) BA-weighted wood mass density (WMDBA), i.e.

the mean of the WMD of each stem weighted by its BA, where

WMD is dry mass/fresh volume in g cm23. The best taxonomic

match wood density of each stem was extracted from a global

database [24,25] following a well-established procedure [26];

(iv) AGB (including stem, branches and leaves) was calculated

using the Chave et al. [15] ‘moist forest’ equation to estimate the

AGB of each tree in the plot, using diameter, WMD and tree

height, with height estimated from diameter using the rec-

ommended regional equations for West (region west of the

Dahomey gap), Central (Congo–Ogouée Basin and contiguous

forest) and East (east of Congo Basin) Africa, as defined in [7],

http://www.afritron.org
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Figure 1. Above-ground biomass (AGB), basal area (BA), basal area-weighted wood mass density (WMDBA), and stem density for 260 plots in closed-canopy tropical
forest. Green represents ‘closed forest’ and ‘flooded forest’ categories from the 300 m resolution European Space Agency Globcover (v. 2.3) map for the year 2009.
(Online version in colour.)
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and expressed dry mass as Mg ha21 (¼ metric tonnes ha21). The

stem density BA, WMD, WMDBA and AGB values were calculated

using the http://www.forestplots.net/ data management facility

[27]; version 13 April 2013 [28]. The locations of the study plots

are shown in figure 1.

Average mean annual temperature (TA), mean monthly

maximum air temperature (Tmax), mean monthly minimum

air temperature (Tmin), mean temperature in the warmest and

coldest quarters (TWARMQ, TCOLDQ), temperature seasonality

(coefficient of variation; TCV) and average mean annual precipi-

tation (PA), mean monthly maximum precipitation (Pmax),

mean monthly minimum precipitation (Pmin), precipitation in

the wettest and driest quarters (PWETQ, PDRYQ) and precipitation

seasonality (coefficient of variation; PCV) were extracted from

the WorldClim database at the finest resolution available (300;

[23]), giving mean long-term climate data (approx. 1950–2000)

for each plot location (see the electronic supplementary material

for further details).

Detailed information on soils was not available for most plots,

but the soil class or type was often known or estimated from data

outside the plot, local knowledge, local soil or geology [29]. For

each plot, we therefore had a notional soil type, and where necess-

ary this information was converted to a standard classification and

soil variables extracted (for 0–30 cm and 30–100 cm depth) for

the corresponding soil type at or closest to the plot location from

the FAO Digital Soil Map of the World dataset [29]. This provides

a method of incorporating consistent soil information, while avoid-

ing the possible problem of incorrectly assigning plots overlying

non-dominant soil types, or averaging data from plots on differing

soil types within the same interpolated soil map grid square. Hence,

plots within the same landscape on differing soil types are assigned

corresponding differing soil parameters. The soil data are to be trea-

ted with caution, as they are not in situ data, particularly as soil

geographers sometimes use vegetation characteristics themselves

as an aid to their mapping of soil [30], giving rise to a potential tau-

tology. Nevertheless, our approach taken here incorporates the

in situ data available and avoids some common pitfalls of using

gridded soil data allowing for a first-order analysis of any likely

edaphic effects on the studied stand properties.

To test for soil-related effects, we used (i) principal components

analysis (PCA) on the soil-structure-related data (0–100 cm), giving

a sand–clay axis (PC1 sand; low values are high sand content) and a

silt axis (PC2 clay–silt; high values are clay-rich, low values silt-rich;

loadings in the electronic supplementary material); (ii) sum of

exchangeable bases (0–30 cm), in cmol kg21 (
P

B), the most rel-

evant to tree growth cation-related plant nutrition variable in the

FAO dataset; (iii) C : N ratios as a surrogate for plant available phos-

phorus. Phosphorus availability is likely to be very important for
tree growth but is not reported in the FAO or other large-scale soil

datasets. However, soil C : N ratio (0–30 cm) has been shown to

be strongly negatively correlated with total extractable phosphorus

across in Amazonia [5], and unpublished African in situ soil data

also support this notion (S. Lewis et al., unpublished data). Addition-

ally, we also define soil classes based on pedogenic development,

following the scheme in reference [31]: all soils younger than alisols

(in this dataset cambisols and histosols), score 1; all soils younger

than ferralsols but older than alisols, score 2; all ferralsols, score 3.

Habitat fragmentation indices were devised using Google

Earth Pro. We measured the distance from the plot centre to

(i) the nearest forest edge (any absence of forest cover greater

than or equal to 1 ha), giving a distance to edge (fragment edge

in km, FE) and (ii) the nearest edge of a clearing greater than or

equal to 1 ha in eight directions every 458 from north, from

which we estimated fragment size by summing the areas of the

eight triangles generated (fragment area in km2; FA).

(b) Statistical analysis
The dataset is complex with explanatory variables spatially auto-

correlated. Furthermore, some of the soil types are rare, and

temperature- and precipitation-related variables also correlate.

As there is no single statistical method that can account for all

of these aspects of the dataset, our approach was to use a

series of statistical techniques, each with its own limitations, to

build a synthetic understanding of the controls on AGB.

We first investigate the continuous variables, presenting

Spearman’s correlation coefficients, accounting for spatial auto-

correlation using Dutilleul’s method [32]. For categorical soil

variables, we use ANOVA to assess their potential impacts on

response variables. We then take an information-theoretic

approach, testing all possible combinations of the climate, frag-

mentation and soil variables, selecting the best model on the

basis of the lowest Akaike’s information criterion, corrected for

finite sample sizes (AICC). We assume all of the ordinary least-

squares (OLS) models within two AICC units of the lowest

AICC model are plausible alternatives in terms of explaining

variation in the dataset [33,34]. Extensive preliminary analysis

showed which pairs of variables had the most explanatory

power Tmin or TCOLDQ, Tmax or TWARMQ, Pmin or PDRYQ, Pmax

or PWETQ. We selected Tmin, TWARMQ, Pmin and PWETQ for

inclusion in the models to better allow comparisons of models

across response variables. Following this, the low AICC models

were checked for parameter redundancy by removing redundant

variables that are the same sign (i.e. if TA and TWARMQ are

included and of the same sign, then one is removed based on

importance values), and the full suite of models was run again,

http://www.forestplots.net/
http://www.forestplots.net/
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minus these redundant terms (see the electronic supplementary

material for further details). Removing redundant terms aids

the interpretation of the results and avoids the possible problem

of over-fitting sometimes associated with larger datasets [34].

We then account for spatial autocorrelation in our OLS models.

As there is no definitive technique to account for spatial autocorre-

lation [35], we follow the recent example of Quesada et al. [3] who

used eigenvector-based spatial filtering (extracted by principle

component of neighbour matrices [36,37]) on a similar dataset

from Amazonia, which aides cross-continental comparisons. We

identify the spatial filters significantly correlated with the residuals

from the OLS model, and re-run the identical explanatory variables

as in the OLS model plus the selected filters, termed spatial eigen-

vector mapping (SEVM) models. We computed other less stringent

filtering methods, but as these inform more on the underlying

structure of the variables rather than addressing our specific

hypotheses we omit them for brevity (see [3]). We used SPATIAL

ECOLOGY IN MACROECOLOGY, version 4.0 [37] for the analysis.
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Figure 2. Above-ground biomass (AGB) plotted against basal area, basal area-
weighted wood mass density, and stem density for 260 plots in closed-canopy
tropical forest. OLS lines are, AGB¼ 278.6 þ 15.6 � BA (r2 ¼ 0.71);
AGB ¼ 282.4 þ 755 � WMDBA (r2 ¼ 0.18). (Online version in colour.)
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3. Results
(a) General patterns
The mean stem density of the 260 plots was 425.6 stems ha21

greater than or equal to 100 mm diameter (95% CI: +11.1;

figure 1). The mean BA was 30.3 m2 ha21 (CI: +0.77; figure 1).

The mean WMD was 0.648 g cm23 (CI: +0.0063) on a stems

basis, with WMDBA (BA-weighted WMD) being 0.633 g cm23

(CI: +0.0080). The mean above-ground live biomass was esti-

mated at 395.7 Mg dry mass ha21 (CI: +14.3; figure 1). The

relationships between AGB and three possible proximate

causes of variation, stems ha21, BA and WMDBA differ from

strong (BA) to non-significant (stems ha21; figure 2). There was

a strong significant convex relationship of AGB with latitude

( p , 0.001), with AGB tending to be greatest near the equator,

alongside more moderate significant relationships with BA

and WMDBA ( p , 0.001 and p¼ 0.02), but not for the number

of trees per hectare (figure 3). Quadratic fits thus suggest that,

on average, forests on the equator have high AGB (452 Mg dry

mass ha21), relatively high BA (32.7 m2 ha21), and relatively

high WMDBA (0.64 g cm23; figure 3). Surprisingly, TA does not

show a clear convex relationship with latitude (see the electronic

supplementary material). Counterintuitively, many lower lati-

tude plots have lower temperatures because they are at a

higher altitude. Similarly, there is no latitudinal relationship

with PA. This is because PDRYQ is convexly related to latitude,

whereas PWETQ is concavely related, obviating any latitudinal

trend in PA (see the electronic supplementary material). Average

soil development age also peaks at the equator, where heavily

weathered ferralsols dominate, as does fragment size and

distance to the nearest clearing. These correlations imply that

lower TA, consistent moderately high PA, a lack of habitat frag-

mentation, and attributes associated with highly weathered

soils may promote the highest AGB. The values for all plots

are provided in the electronic supplementary material.

The different forest types had different AGB and other

structural parameters. The five swamp locations had lower

AGB, 322.2 Mg dry mass ha21 (not significantly so, p ¼ 0.16),

and significantly lower BA (24.2 m2; p ¼ 0.03) than the terra
firme plots. This was attributable to fewer large diameter

stems in such forests, as the total number of stems was not

lower (428 ha21) and WMDBA was much higher than for the

non-swamp plots (0.728 g cm21). These data confirm the out-

lier status of the swamp plots, which were therefore excluded
from the final information-theoretic analysis. Monodominant

forests, dominated by Gilbertiodendron dewevrei, are a common

occurrence in Central Africa (n ¼ 23) and were found to have

significantly higher AGB than non-Gilbertiodendron-dominated

forests (514.9 versus 384.1 Mg dry mass ha21; ANOVA,

p , 0.001), but not BA (32.2 versus 30.2 m2). They also had

significantly lower stem density (340 versus 434 stems ha21;

p , 0.001) and significantly higher WMDBA (0.696 versus

0.627 g cm23; p , 0.001).
(b) Relationships with single variables
AGB was found to be positively spatially autocorrela-

ted over distances to approximately 700 km, with similar

values for BA (approx. 500 km), and less for WMDBA

(approx. 300 km), but no clear pattern for stem density (see

the electronic supplementary material). Considering bivariate

relationships first, although the signs of the AGB relation-

ships with PA, Pmin (positive), PWET and PCV (negative),

and all temperature variables (negative) were as predicted,
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only TCV and PCV were significantly negatively correlated

with AGB after adjustment of the effective degrees of free-

dom to account for spatial autocorrelation (figure 4). The

soil variable
P

B was, however, significantly negatively corre-

lated with AGB, and PC2 (clay) significantly positively

correlated, even after accounting for spatial autocorrelation

(figure 4). The results for BA show significant negative

relationships with only TA and TWARMQ (after accounting

for spatial autocorrelation), although
P

B was marginally sig-

nificant ( p ¼ 0.06). For WMDBA, only PC2 (clay) was

significantly related, suggesting clay-rich soils have higher

WMDBA than silt-rich soils. Note that the
P

B and C : N cor-

relations are strongly influenced by the histosol soils which

often occur beneath swamps. For stem density, none of the

studied variables was found to be significantly correlated

after accounting for spatial autocorrelation. No edge or frag-

ment size variables were significantly correlated with AGB,

BA, WMDBA or stem density. Correlation coefficients before

and after accounting for spatial autocorrelation plus bivariate

plots are in the electronic supplementary material.

The 260 plots were located on 17 major soil types, within

eight major classes. The most common soil class was ferral-

sols (n ¼ 94), and most common type orthic ferralsols

(n ¼ 74). An ANOVA on the plots overlying common soil

classes (n � 5 plots) showed that AGB on cambisols, nitosols

and acrisols (373, 358 and 320 Mg ha21, respectively) was sig-

nificantly lower than that on ferralsols and arenosols (436 and

444 Mg ha21 respectively; see electronic supplementary

material for full results). That is, the relatively fertile and devel-

opmentally younger soils had lower AGB than either the

sandier and lower fertility arenosols, or deeply weathered

but nutrient-poor ferralsols. For BA, the only significant differ-

ence was the lower values on acrisols (27.5 m2 ha21) compared

with ferralsols (32.0 m2 ha21). The plots on arenosols,

cambisols and nitosols all had similar BA (30.7, 30.3,

30.2 m2 ha21, respectively). Developmentally younger and

relatively fertile acrisols and cambisols have significantly

lower WMDBA (0.609 and 0.617 g cm23) than arenosols

(0.660 g cm23) or histosols, which at 0.728 g cm23 were
significantly higher than all other soil classes. For stem density,

nitosols were significantly higher (477 stems ha21) than either

ferralsols or arenosols (423 and 395 stems ha21, respectively).

Analysis of soil types showed similar results to the soil class

ANOVAs. For example, developmentally younger soils had

lower AGB, with xanthic ferralsols having the highest AGB

(463 Mg ha21), double that of the lowest class (chromic cambi-

sols, 232 Mg ha21). Of three within-soil class comparisons (e.g.

ferric versus orthic acrisols), the more fertile soil type had lower

AGB in each case. All ANOVA results are in the electronic sup-

plementary material.
(c) Relationships considering all variables
The lowest AICC OLS model for AGB included PA, PWETQ,

TA, TWARMQ, C : N,
P

B and PC2 (silt–clay continuum) soil

variables and explained 32.4% of the variation in the dataset

(table 1). PA was positively related to AGB, higher by 1.3 Mg

dry mass ha21 for each 10 mm increment of rainfall, unless

precipitation in the wettest quarter was higher, when this

would reduce AGB. Put another way, precipitation in the

nine drier months is positively related to AGB, whereas it

is negatively related in the wettest three months. Similarly,

TA was positively related to AGB and TWARMQ negatively

related. Taken together, this implies a net AGB difference of

approximately 211.7 Mg dry mass ha21 (approx. 3% of

AGB) for each degree Celsius of higher temperature. C : N

ratio was negatively related to AGB, i.e. higher phosphorous

availability is related to higher AGB (if the assumption that

C : N is a surrogate for plant available phosphorus, as we

argue in the methods, holds). Conversely, higher
P

B was

negatively related to AGB; clay-rich soils (PC2) were positively

related. Standardized regression coefficients show that soil and

temperature effects are larger than the precipitation effects.

There were 10 other models within two AICC units, and there-

fore plausible, with each model removing one or more of
P

B,

C : N and PWETQ, and/or adding a negative FE term (i.e. lower

AGB farther from edges). Overall, there are opposing sign

temperature (TA, TWARMQ), precipitation (PA, PWETQ) and soil
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fertility (C : N,
P

B) terms affecting forest AGB. The models’

did not show strong spatial structure (see the electronic

supplementary material). Excluding the 23 Gilberiodendron-

dominated plots does not alter any conclusions.

The lowest AICC model after applying the SEVM filters

was similar to the OLS models, including PA, PWETQ and

PC2 but no longer with any temperature or soil fertility vari-

ables (table 1). Eight other low AICC models were identified

as plausible: these were without PC2 (five models), or added
P

B or C : N in some combination, in common with the OLS

models. In one model, temperature terms are retained, but

these are net positive. Thus, the main impact of the filters

was to remove the overall negative temperature effect.

However, this result should be treated cautiously, because

the SEVM residuals models are very similar to those from

the OLS models (see the electronic supplementary material).

Given the importance of high temperature impacts for

the future of tropical forests as well as the ambiguity of the

results, we re-ran the models including only the warmest

forests: those plots less than 500 m. All the low AICC OLS

models again included a negative relation with temperature,

as did 10 of 11 low AICC SEVM models. Overall, among the

warmest African forests, if temperature variation has an

impact on AGB variation, then it is negative.

The lowest AICC OLS model for BA was similar to the

AGB OLS models, but with the two soil fertility terms not

included, and an added negative FE term; this model explained

24.6% of the variation in the dataset (table 1). Twelve other low

AICC models were identified, adding to the best model nega-

tive
P

B and/or C : N terms, adding a positive TA term or

removing PWETQ or FE in some combination. Thus, the low

AICC BA and AGB models were collectively similar. Adding
the SEVM filters retained similar results, but removed the pre-

cipitation terms and reduced the magnitude of both the

negative TWARMQ and positive PC2 terms (table 2). The five

alternative low AICC models include the missing PA and

PWETQ terms and/or the C : N term. Hence, for BA, the temp-

erature relationship is negative and larger than that for AGB

(approx. 3–5% lower BA in forests growing under higher air

temperature). The spatial residuals were improved using the

SEVM filters over the OLS models.

The lowest AICC OLS model for WMDBA included posi-

tive effects of Pmin, positive TA impact, positive PC2 (clay)

plus negative C : N relationship, PC1 (sand) and FA terms.

The model explained 15.0% of the variation in the dataset

(table 1). There were three alternative low AICC models,

involving an additional negative term
P

B, negative Tmin or

without the FA term, respectively. The lowest AICC SEVM

model retained only a strong positive relationship with temp-

erature, PC2 and the negative FA terms. Seven alternative low

AICC models included an additional PC1, C : N, and/or TA

term or dropped PC2 in various combinations. Overall,

there is a strong increase in WMDBA with higher air tempera-

ture, a likely decrease with C : N, and an increase in sandy- or

clay-rich soils. The precipitation and fragmentation terms are

weak in comparison with the temperature and soil effects.

The spatial residuals were improved over short distances

when using the SEVM filters.

The lowest AICC OLS model explained only 7.1% of the

variation in stems ha21; the model included a positive

relationship with PWETQ and PC2, a stronger negative TA

term and a negative FE term (i.e. more stems closer to forest

edges; table 1). The 12 alternative low AICC models differed

from the other dependent variables analysed, as models of
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stem density ranged from those including only single vari-

ables (either PWETQ or TA) to including all six parameters

(PWETQ, TA, PC2,
P

B, C : N, FE). Terms for
P

B and C : N

were positive and were each included in four of 13 models.

The SEVM low AICC model were similar, with 20 selected,

again spanning models including from one to six environ-

mental parameters. Only the negative TA and FE terms

were retained in the SEVM lowest AICC model (table 1).
 hing.org
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(d) Comparing West, East and Central African forests
The main AGB, BA, WMDBA and stem density results are repli-

cated when only plots from Central Africa, the largest regional

group of plots, are used in the analyses. The environment–struc-

ture relationships reported above are thus not driven by

combining plots from within the West, Central and East Africa

regions. There are however systematic differences among the

regions. Although plots grouped into West, Central and East

African regions showed no differences in mean stem density,

those sampled in Central African forests had over one-third

higher AGB than either the West or East African forests

(table 2). AGB differences among forests are partly caused by

BA differences, which largely mirror AGB, with WMDBA vari-

ations also being important, with this stand-level trait being

significantly higher for Central African forests than their West

or East African counterparts. By contrast, WMD was not signifi-

cantly different between West and Central Africa, whereas

WMD in the sampled East African forests remained significantly

lower. Thus, the sampled West African forests are characterized

by relatively low AGB, caused by low BA and lower WMD of

larger trees, whereas the sampled East African forests are charac-

terized by even lower AGB, but driven by low BA, and lower

WMD of all size classes of trees. In terms of the environment,

the sampled West African plots are in forests that tend to be

warmer and more fragmented, and have higher C : N ratio

(lower phosphorus) compared with Central Africa. The sampled

East African forests, by contrast, are cooler, drier, more fragmen-

ted, and on developmentally younger and higher
P

B and lower

C : N ratio soils than Central African forests, suggesting multiple

combinations of variables may lead to low AGB forests (table 2).
4. Discussion
African tropical forests are characterized by relatively high AGB,

at 395.7 Mg dry mass ha21, which in Central Africa—where the

majority of the areal extent of African closed-canopy forest is

located—is higher at 429 Mg dry mass ha21, and statistically

indistinguishable from the high AGB stocks of the forests

of Borneo at approximately 445 Mg dry mass ha21 [4]. These

African and Asian values are significantly higher than forest

AGB reported from a synthesis across Amazonia at 289 Mg

dry mass ha21 [1]. These results show that there is a difference

between generally higher AGB palaeotropical forest versus gen-

erally lower AGB neotropical forest, which supports recent

studies showing neo- versus palaeotropical differences in stem

allometry, BA [6] and AGB [7] based on more limited African

data (summarized in table 3). However, all such results should

be treated cautiously because of a fundamental limitation: we

are never measuring AGB directly, but are rather estimating it

using imperfect allometric relationships. Improved allometric

relationships (increased sample sizes of trees of known mass;

better characterization of height–diameter relations [39]; more



Table 3. Cross-continental comparisons of forest structure from networks of intact old-growth closed-canopy tropical forest for the largest biogeographic regions
from Africa, Asia and the Americas.

parameter Central Africa Borneo, Asia central/east Amazonia

above-ground biomass, Mg dry mass ha21 429a 445b 341c

basal area, m2 ha21 31.5a 37.1b 29.0c

wood mass density, g cm23 0.65a 0.60b 0.66c

stem density, �100 mm diameter, ha21 425a 602b 597d

mean tree size, m2 0.074 0.062 0.049

mean tree height, stem 100 mm diameter, m 13.3e 11.9e 10.6e

mean tree height, stem 400 mm diameter, m 30.8e 30.3e 26.1e

mean tree height, stem 1000 mm diameter, m 43.5e 46.0e 39.0e

aThis study.
bFrom [4].
cFrom [22].
dFrom [38].
eFrom [7].
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WMD measurements) plus more extensive sampling of tropical

forests will help refine future estimates.

The high AGB in African forests is coupled with a very low

stem density, 426 stems greater than or equal to 100 mm ha21,

compared with 602 ha21 in Borneo [4] and 592 in Amazonia

[38]. Low stem density is therefore the signature structural fea-

ture of African tropical forest compared with other continents.

It then follows that mean tree size is greater in Africa than else-

where in the tropics (table 3). WMD in Africa (0.65 g cm23) is

similar to that in central and eastern Amazonia (0.66 g cm23;

[22] but higher than forests in Borneo (0.60 g cm23; [4] or

western Amazonia (0.56 g cm23; [22]). This result points

towards African forests being dominated by relatively low-

frequency disturbance regimes over at least recent decades

allowing trees time to grow large and stands to self-thin. This

point is reinforced by the relatively common occurrence in Cen-

tral Africa of monodominant stands, dominated by a single tree

species (e.g. Gilbertiodendron dewevrei, Cynometra alexandri),
compared with the rarity of monodominance in Amazonia or

Southeast Asia [40]. These stands, which can cover tens to thou-

sands of hectares, lack obvious edaphic or climatic controls,

occur instead in areas that appear to lack disturbance over

the long term [40–43]. The even lower stem density, higher

AGB and higher WMDBA and slower dynamics of these forests,

compared with nearby mixed-species stands, provides further

support for this view [40–43]. On the other hand, the extremely

low stem density in African forests may relate to the very high

large animal biomass: elephants (Loxodonta africana cyclotis),
gorillas (Gorilla gorilla gorilla) and other large herbivores such

as bongos (Tragelaphus eurycerus) may keep the density of

small trees very low [44]. This view is reinforced by a recent

paper from Southeast Asia showing a large increase in sapling

density when the large animal fauna is extirpated [45].

Our results, in conjunction with recent studies across

Borneo [4] and Amazonia [2,3] and pan-tropical analyses

[6,7], thus provide some evidence that the three major conti-

nental groupings of tropical forest differ in their basic

structural parameters, with African forests being tall stature,

high AGB, low stem density and high WMD; Borneo charac-

terized by tall stature, high AGB, high stem density and

lower WMD, and Amazonian stands associated with shorter
stature, lower AGB, high stem density and across most of

Amazonia high WMD (table 3). The implication is that

there are either (i) major cross-continental allocation differ-

ences or (ii) NPP is greater across the palaeotropics, or (iii)

biomass residence times are longer (i.e. disturbance rates

are lower) in the palaeotropics. The low stem density in

African forests points towards Amazon–Africa differences

being more likely a result of different biomass residence

times, with Africa–Borneo differences being more likely

based on NPP differences (high AGB, but not low stem den-

sity, and low WMDBA suggesting higher NPP). A recent pan-

tropical analysis of biomass residence times is consistent with

these conclusions despite few data from the palaeotropics

[31]. Alternatively, the differences may relate to the history

and biogeography of the different regions, particularly the

dominance of the Dipterocarpaceae across Southeast Asia.

Spatially, our results show clear patterns such as the

relationship with latitude, with the highest AGB forests near

the equator. Here, we briefly consider the impact of soil par-

ameters, rainfall, temperature and forest fragmentation, in

turn, followed by conclusions on the possible causes of differ-

ence among the sampled plots in Central, West and East Africa.

The soil data derive from a gridded global database rather

than from the plots themselves and thus must be treated cau-

tiously. Furthermore, the analyses were sensitive to outlier

soil types (leading to the exclusion of swamp plots on histo-

sols from the latter analyses). The AGB–soil fertility results

were, however, partially consistent with both our stated

hypotheses. First, we hypothesized that higher resource avail-

ability increases NPP increasing AGB. Higher C : N ratios

were associated with lower AGB; and because C : N is nega-

tively related to total extractable phosphorus [5], this implies

that it might be higher phosphorus availability that is associ-

ated with higher AGB. This accords with studies that show

that phosphorus can limit tree growth in tropical forests,

and consistent with those from Amazonia, where AGB is

positively linked with total soil phosphorus (see [3] and refer-

ences therein). Second, and counter to this, faster-growing

forest stands may become dominated by low WMD species

with shorter lifespans (lower tW), and hence lower AGB.

Consistent with this, when
P

B was included in low AICC
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models, it was strongly negatively associated with AGB.

Again, this is accords with results from Amazonia where

AGB is negatively related to exchangeable soil potassium [3].

However, considering WMDBA, the results are not as clearly

interpretable, as the lowest AICC SEVM model includes

no soil fertility terms. While some alternative models do

include negative
P

B terms, when included C : N terms

imply a positive phosphorus–WMDBA relationship, counter

to predictions. Our working hypothesis to account for these

results is that a greater supply of limiting nutrients leads to

higher AGB, because higher NPP levels more than offset any

lowering of WMDBA and thereby tW, whereas greater supplies

of non-limiting nutrients lead to lower AGB, because tW is

lower and NPP is not increased. The data on soil physical vari-

ables are too limited to make robust deductions, as soil depth

and other physical conditions remain unknown. AGB was,

however, positively associated with developmentally older

soils, and with clay-rich soils compared with silt-rich soils

(PC2), suggesting that deep well-structured clay-rich soils may

be of benefit to trees in attaining a large size. Interestingly, the

PC2 term was usually a stronger term in the analyses suggesting

impacts on tW may be a more important driver of differences in

AGB, BA and WMD than soil fertility terms. In situ sampling is

required to elucidate the impacts of the physical and chemical

characteristics of soils on AGB and its component drivers.

Biomass relationships with rainfall were likewise broadly

consistent with a priori expectations. In all OLS and SEVM

analyses, the low AICC models included terms in which

higher rainfall outside of the wettest quarter increased

AGB, implying increased NPP owing to higher water avail-

ability. The results are broadly consistent with those from

Amazonia where precipitation in the dry season is positively

associated with variation in AGB [3], and across Borneo

where PA is positively associated with AGB [4], and wider

syntheses [46]. Our results differ from some previous reports

in that more rainfall in the wettest part of the year was corre-

lated with lower AGB. However, our results are consistent

with the limited data showing than ever-wet forests tend

to have lower NPP [14,16,17] and AGB [15]. This implies

that the excess rainfall either reduces NPP (owing to

more clouds, or perhaps soil saturation effects) or elevates

mortality, thereby shortening AGB residence times.

The results of the possible impact of the temperature-

related variables on AGB were complex. Bivariate plots and

the low AICC OLS models both showed that high TWARMQ

was associated with low AGB. By contrast, only one of eight

SEVM low AICC models included a negative net temperature

term. This suggests that after accounting for the spatial struc-

ture in the temperature data the negative effect of

temperature is removed (but note that the SEVM filters did

not substantially improve the residuals in the model, see elec-

tronic supplementary material). The cause of the difference is

due to filter 1 in the SEVM analyses, which is deeply concave

with distance. This is driven by a preponderance of higher

elevation plot locations around the eastern and western periph-

ery of the Congo Basin, giving long-distance temperature

symmetry in the dataset. Thus, when plots from only Central

Africa are retained the same shaped SEVM filter 1 is retained,

whereas when only plots less than or equal to 500 m are

retained in the analysis (i.e. higher altitude east and west Cen-

tral Africa region plots are removed), the negative temperature

effect from the OLS model is retained in most low AICC

models. A negative relationship between temperature and
AGB could arise through a variety of mechanisms (e.g.

higher respiration costs; midday declines in photosynthesis

[19]) and is consistent with a demonstrated negative relation-

ship of TA with wood productivity in Amazonia [3]. Such

temperature effects have not, in general, been detected in the

past [3,4,46], but it is worth noting that previous AGB studies

have analysed smaller sample sizes than in this study.

The lowest AICC OLS model predicts that forests have 11.7

Mg dry mass ha21 lower AGB for each higher degree of temp-

erature (3% of AGB). Recent model results give divergent

projections of the magnitude of temperature impacts on tropical

vegetation biomass. For example, our results are about 20–40%

of the impact predicted by one recent model [47]. However, a

more recent result suggests that approximately 8 Mg C ha21 is

lost at equilibrium per degree of warming from the tropical

land surface, of which about half is related to vegetation (and

half to soils; [48] and P. Cox 2013, personal communication).

Thus, assuming biomass is approximately 50% carbon, and

75% of this vegetation biomass is above-ground, the model-

predicted difference is approximately 6 Mg dry mass ha21 for

AGB across all tropical vegetation types. Thus, our results

appear, given our focus on forests with high AGB, broadly

similar to the model results in [48].

Considered another way, if we substitute space for time,

and assume that air temperature is rising by 0.268C per

decade [18], this would equate to a loss of approximately

0.3 Mg dry mass ha21 yr21 for contemporary forests (0.08%

of AGB). Such a decline has not been detected in African

forests, indeed, a much larger increase of 1.2 Mg dry mass

ha21 yr21 has been documented [26]. This is has been attri-

buted, in part, to higher atmospheric CO2 concentrations, an

interpretation consistent with theory and model results [49]

and the observation that increasing forest AGB is a general,

long-term and global phenomena [50]. Thus, if there is a nega-

tive impact of temperature on tropical AGB currently, then it is

being overwhelmed by other positive effects such as increasing

CO2. If CO2 effects saturate in the future, then any negative

impact of temperature should become apparent.

A further surprising temperature effect was the strong

positive relationship of WMDBA with TA (table 1). For each

higher degree, WMDBA increases by 0.01 g cm23 (approx.

1.5%). Combining this with the WMDBA–AGB relationship

in figure 1 suggests each higher degree increases AGB by

7.6 Mg dry mass ha21 purely related to higher wood density

in these forests. The same strong positive temperature–wood

density relationship is shown across Amazonia [3,51] and

larger-scale analyses across the Americas [52] and China

[53]. The positive WMD–TA relationship is thought possibly

to be a necessary adaptation to the effect of increases in temp-

erature reducing the viscosity of water [54] and the generally

higher vapour pressure deficits encountered by trees living in

warmer climates, which, all things being equal, may benefit

higher WMD trees as they tend to have increased drought tol-

erances. This effect has been shown in experiments [55].

Thus, in terms of AGB, the strong negative BA–temperature

relationship is somewhat offset by the positive WMD–temp-

erature. Additionally, in global change terms, hypothesized

decreases in WMD of forest stands caused by better con-

ditions for growth [26] may be somewhat offset by the

increase in WMD from higher air temperatures.

The habitat fragmentation results are a difficult to interpret.

This may be related to the relatively weak indices derived for

distance from the nearest edge and fragment area. Reduced
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BA and lower stem density further from edges could be related

to a lower density of elephants and other large herbivores, and

the known thickening of vegetation very close to forest edges.

However, the lower WMDBA in larger fragments does not fit

this pattern. Much finer scale analyses with better metrics of

distance from edges, including different types of edge [56],

will be necessary to ascertain the true effects of fragmentation

on forest biomass. More generally, the stem density models

explained a much lower proportion of the variation in the

data (7%) compared with the AGB, BA and WMDBA models.

The large number of low AICC models and their very different

structure suggest that stem density is not primarily controlled

by the factors we measured. However, there was a strong

impact of temperature, with each greater degree Celsius

associated with 10 stems fewer per hectare. We know of no

reason for such a relationship. Given that the plots were

selected as ‘old-growth’, and density is uniformly low across

the continent, this suggests that stem density is primarily an

emergent property of the long-term disturbance regime, and

this has been relatively low across the African tropical forests

over recent decades.

We suggest that the lower AGB in West African forests com-

pared with Central African forests is likely to be caused by a

complex mix of factors. First, the low WMDBA of the West

African forest, but not WMD, compared with Central African

forest, suggests a species composition difference, with large

trees having lower WMD in West Africa. This may be caused

by the removal of elephant populations over the past few hun-

dred years, and a generally more depauperate fauna, leading

to a lack of dispersal of larger seeded species that tend to be

associated with higher WMD. Second, the two key environ-

mental differences that may account for the lower West African

AGB are the high C : N ratio (likely associated lower phosphorus

levels), and higher average air temperatures. By contrast, the

lower AGB in forests of East Africa appears to be related to devel-

opmentally younger soils, with high
P

B, and therefore lower

WMD for all size classes of stems. This is reinforced by the evi-

dence of the relatively low stature of East African forests, with

trees being significantly shorter than elsewhere in Africa

[7,39,57]. Differences in forest structure correlated with soil age

from central to eastern Africa may be similar to the east–west

Amazon differences related to soil development age; if so, then

we would expect to see similarly high stem turnover and shorter

tW in East compared with Central Africa when recensuses of

these inventory plots are completed. While both East and West

Africa are also more fragmented than Central Africa, our OLS

results do not point to this being a major factor in their lower

AGB. However, our findings clearly show that there are multiple

combinations of environmental conditions that lead to low AGB.

Overall, our results, combined with others, suggest pan-

tropical AGB–environment consistencies. These have potential

implications for the future behaviour of tropical forests within

the changing Earth system. While space for time substitutions

must be treated with caution, especially in the light of the inevi-

table spatial and temporal autocorrelations, the results suggest
that the physiological effects of higher air temperature may to

some degree offset ongoing increases in AGB expected to flow

on from NPP enhancements associated with increased atmos-

pheric CO2 concentrations (as models show [43,58]). Perhaps

more importantly, the influence of rainfall may be large but dif-

ficult to quantify, with precipitation in the driest nine months is

positively related to AGB, whereas precipitation in the wettest

three months is negatively associated with AGB. This potential

future change appears underappreciated by the global change

community, which has focused significant attention on the

impacts of droughts [59], but not the implications for forests

of wet-season rainfall increases. Higher temperature and con-

comitant decreases in water viscosity will also probably lead

to a shift towards higher WMD species, countering any shift

to lower WMD species from either increasing forest dynamism

[60,61], or from growth increases from higher resource avail-

ability which have been hypothesized to benefit lower WMD

species [26,38,49]. Such conclusions are necessarily tentative,

because the underlying NPP and biomass residence time par-

ameters need to be analysed across the environmental space

that tropical forests occur to more robustly test for possible gen-

eralizations. Once identified, such patterns and processes can

then be incorporated into predictive models of the future.

This will be possible if emerging pan-tropical networks are

well-distributed, long-term, and efforts are made to ensure

that monitoring sites incorporate site-specific soil analyses

and local climate data.
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