22 research outputs found

    Evaluation of the durability of long‐lasting insecticidal nets in Guatemala

    Get PDF
    Background Insecticide-treated bed nets (ITNs) are widely used for the prevention and control of malaria. In Guatemala, since 2006, ITNs have been distributed free of charge in the highest risk malaria-endemic areas and constitute one of the primary vector control measures in the country. Despite relying on ITNs for almost 15 years, there is a lack of data to inform the timely replacement of ITNs whose effectiveness becomes diminished by routine use. Methods The survivorship, physical integrity, insecticide content and bio-efficacy of ITNs were assessed through cross-sectional surveys conducted at 18, 24 and 32 months after a 2012 distribution of PermaNet® 2.0 in a malaria focus in Guatemala. A working definition of ‘LLIN providing adequate protection’ was developed based on the combination of the previous parameters and usage of the net. A total of 988 ITNs were analysed (290 at 18 months, 349 at 24 months and 349 at 32 months). Results The functional survivorship of bed nets decreased over time, from 92% at 18 months, to 81% at 24 months and 69% at 32 months. Independent of the time of the survey, less than 80% of the bed nets that were still present in the household were reported to have been used the night before. The proportion of bed nets categorized as “in good condition” per World Health Organization (WHO) guidelines of the total hole surface area, diminished from 77% to 18 months to 58% at 32 months. The portion of ITNs with deltamethrin concentration less than 10 mg/m2 increased over time. Among the bed nets for which bioassays were conducted, the percentage that met WHO criteria for efficacy dropped from 90% to 18 months to 52% at 32 months. The proportion of long-lasting insecticidal nets (LLINs) providing adequate protection was 38% at 24 months and 21% at 32 months. Conclusions At 32 months, only one in five of the LLINs distributed in the campaign provided adequate protection in terms of survivorship, physical integrity, bio-efficacy and usage. Efforts to encourage the community to retain, use, and properly care for the LLINs may improve their impact. Durability assessments should be included in future campaigns

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Low Urinary Iodine Concentration Is Associated with Increased Risk for Elevated Plasma Glucose in Females: An Analysis of NHANES 2011–12

    No full text
    Iodine intake in the US has declined in recent years. Iodine insufficiency increases the risk for inadequate thyroid hormone production and there is growing evidence that sub-clinical hypothyroidism may be disruptive to metabolic health, including insulin resistance (IR). We investigated the association between urinary iodine concentrations (UIC), a measurement of iodine status, and IR in adults. Data from 1286 US adults (≥20 years) in the NHANES 2011–2012 were analyzed. Two subgroups (low = UIC < 100 µg/L and normal = UIC ≥ 100 µg/L) were compared for markers of IR, including fasting plasma glucose (FPG) and insulin, homeostatic model assessment of insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1C). Chi-square test, both linear and logistic regression models were used. In males, there were no significant associations between UIC and markers of IR; however, females with normal UIC had greater risks for elevated HOMA-IR (AOR = 0.56, 95% CI= 0.32–0.99) and HbA1C (AOR = 0.56, 95% CI = 0.34–0.90), while females with low UIC had a greater risk for FPG ≥ 5.6 mmol/L (AOR = 1.73, 95% CI = 1.09–2.72). Results only partially support our hypothesis that UIC is associated with the odds of IR in adults. The finding of an increased risk for elevated FPG, a marker of prediabetes, in female adults with low iodine status requires further investigation

    Liver Injury Following Isoniazid Preventive Therapy in HIV Patients Attending Halibet National Referral Hospital, Eritrea: A Prospective Cohort Study

    Get PDF
    Introduction: A 6-month course of isoniazid, 300 mg daily, was programmatically introduced in Eritrea in 2014 as tuberculosis preventive therapy in people living with human immunodeficiency virus (PLHIV). The rollout of isoniazid preventive therapy (IPT) in PLHIV was successful in the first 2–3 years. After 2016, rumours based on rare but real incidents of liver injuries following use of IPT spread widely across the country and created concerns amongst healthcare professionals and consumers, that ultimately caused dramatic decline in the rollout of the intervention. Decision makers have been demanding better evidence as previously conducted local studies had inherent methodological limitations. This real-world observational study was conducted to evaluate the risk of liver injury associated with IPT among PLHIV attending Halibet national referral hospital, Asmara, Eritrea. Methods: A prospective cohort study, that consecutively enrolled PLHIV attending Halibet hospital, was conducted between 1 March and 30 October 2021. Those exposed to anti-retroviral therapy (ART) plus IPT were considered as exposed and those taking only ART were considered as unexposed. Both groups were prospectively followed up for 4–5 months with monthly liver function tests (LFTs). A Cox proportional hazard model was used to explore whether there was increased risk of drug-induced liver injury (DILI) associated with IPT. Probability of survival without DILI was also estimated using Kaplan–Meier curves. Results: A total of 552 patients, 284 exposed and 268 unexposed, completed the study, with a mean follow-up time of 3.97 (SD 0.675) months for the exposed and 4.06 (SD 0.675) months for the unexposed. Twelve patients developed drug-induced liver injury (DILI), with a median time-to-onset of 35 days (interquartile range: 26.8, 60 days). All cases were from the exposed group and all except two cases were asymptomatic. The incidence rate of DILI in the exposed group was 10.6 cases per 1000 person–months and zero for the unexposed group (p = 0.002). Conclusion: DILI in PLHIV taking IPT was common; therefore, liver function should be closely monitored to safely administer the product. Despite high levels of deranged liver enzymes, the majority had no symptoms of DILI, emphasising the importance of close laboratory monitoring, especially during the first 3 months of treatment

    Defining an intermediate category of tuberculin skin test: A mixture model analysis of two high-risk populations from Kampala, Uganda.

    Get PDF
    One principle of tuberculosis control is to prevent the development of tuberculosis disease by treating individuals with latent tuberculosis infection. The diagnosis of latent infection using the tuberculin skin test is not straightforward because of concerns about immunologic cross reactivity with the Bacille Calmette-Guerin (BCG) vaccine and environmental mycobacteria. To parse the effects of BCG vaccine and environmental mycobacteria on the tuberculin skin test, we estimated the frequency distribution of skin test results in two divisions of Kampala, Uganda, ten years apart. We then used mixture models to estimate parameters for underlying distributions and defined clinically meaningful criteria for latent infection, including an indeterminate category. Using percentiles of two underlying normal distributions, we defined two skin test readings to demarcate three ranges. Values of 10 mm or greater contained 90% of individuals with latent infection; values less than 7.2 mm contained 80% of individuals without infection. Contacts with values between 7.2 and 10 mm fell into an indeterminate zone where it was not possible to assign infection. We conclude that systematic tuberculin skin test surveys within populations at risk, combined with mixture model analysis, may be a reproducible, evidence-based approach to define meaningful criteria for latent tuberculosis infection
    corecore