15 research outputs found

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P <5 x 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.Peer reviewe

    Pseudo-nitzschia species distribution in estuaries of the Pacific Northwest based on Automated Ribosomal Intergenic Spacer Analysis (ARISA)

    No full text
    Senior thesis written for Oceanography 444The goals of this study were to compare Pseudo-nitzschia species in two regions, Puget Sound and Barkley Sound, and to see if the location within the sounds had an impact on which species were present. Nine different Pseudo-nitzschia species types were identified within the two regions. High toxin-producing species were found in both sounds, but made up a larger percentage of the Puget Sound communities. ARISA is essential in differentiating the multiple species present.University of Washington, School of Oceanograph

    Global malaria mortality between 1980 and 2010: A systematic analysis

    No full text
    In Ethiopia there is no complete registration system to measure disease burden and risk factors accurately. In this study, the 2015 global burden of diseases, injuries and risk factors (GBD) data were used to analyse the incidence, prevalence and mortality rates of malaria in Ethiopia over the last 25\ua0years

    Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate

    Get PDF
    Recent physiological, pharmacological and anatomical studies provide evidence that one of the main roles of the endocannabinoid system in the brain is the regulation of γ-aminobutyric acid (GABA) and glutamate release. This article aims to review this evidence in the context of its implications for pain. We first provide a brief overview of supraspinal regulation of nociception, followed by a review of the evidence that the brain's endocannabinoid system modulates nociception. We look in detail at regulation of supraspinal GABAergic and glutamatergic neurons by the endocannabinoid system and by exogenously administered cannabinoids. Finally, we review the evidence that cannabinoid-mediated modulation of pain involves modulation of GABAergic and glutamatergic neurotransmission in key brain regions

    Anatomical Distribution of Receptors, Ligands and Enzymes in the Brain and in the Spinal Cord: Circuitries and Neurochemistry

    No full text
    corecore