263 research outputs found

    Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes

    Get PDF
    Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms

    MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus

    Get PDF
    The major pathogen Staphylococcus aureus has to cope with host-derived oxidative stress to cause infections in humans. Here, we report that S. aureus tolerates high concentrations of hypothiocyanous acid (HOSCN), a key antimicrobial oxidant produced in the respiratory tract. We discovered that the flavoprotein disulfide reductase (FDR) MerA protects S. aureus from this oxidant by functioning as a HOSCN reductase, with its deletion sensitizing bacteria to HOSCN. Crystal structures of homodimeric MerA (2.4 Å) with a Cys43–Cys48 intramolecular disulfide, and reduced MerACys43S (1.6 Å) showed the FAD cofactor close to the active site, supporting that MerA functions as a group I FDR. MerA is controlled by the redox-sensitive repressor HypR, which we show to be oxidized to intermolecular disulfides under HOSCN stress, resulting in its inactivation and derepression of merA transcription to promote HOSCN tolerance. Our study highlights the HOSCN tolerance of S. aureus and characterizes the structure and function of MerA as a major HOSCN defense mechanism. Crippling the capacity to respond to HOSCN may be a novel strategy for treating S. aureus infections

    Functional MRI in Awake Unrestrained Dogs

    Get PDF
    Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward

    The Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes

    Get PDF
    Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter-period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world\u27s seasonally freezing lakes and seas

    Bimodal crystallization at polymer-fullerene interfaces

    Get PDF
    The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM-polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid-liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films

    The Tao of open science for ecology

    Get PDF
    The field of ecology is poised to take advantage of emerging technologies that facilitate the gathering, analyzing, and sharing of data, methods, and results. The concept of transparency at all stages of the research process, coupled with free and open access to data, code, and papers, constitutes “open science.” Despite the many benefits of an open approach to science, a number of barriers to entry exist that may prevent researchers from embracing openness in their own work. Here we describe several key shifts in mindset that underpin the transition to more open science. These shifts in mindset include thinking about data stewardship rather than data ownership, embracing transparency throughout the data life‐cycle and project duration, and accepting critique in public. Though foreign and perhaps frightening at first, these changes in thinking stand to benefit the field of ecology by fostering collegiality and broadening access to data and findings. We present an overview of tools and best practices that can enable these shifts in mindset at each stage of the research process, including tools to support data management planning and reproducible analyses, strategies for soliciting constructive feedback throughout the research process, and methods of broadening access to final research products

    Effectiveness and persistence of acitretin, ciclosporin, fumaric acid esters and methotrexate for patients with moderate-to-severe psoriasis: a cohort study from BADBIR

    Get PDF
    Background Real-world data evaluating effectiveness and persistence of systemic therapies for patients with psoriasis are limited. Objectives To determine the effectiveness and persistence of acitretin, ciclosporin, fumaric acid esters (FAEs) and methotrexate in patients with moderate-to-severe psoriasis. Methods Data from The British Association of Dermatologists Biologics and Immunomodulators Register (BADBIR), a prospective, multi-centre pharmacovigilance register of patients with moderate-to-severe psoriasis receiving biologic and/or conventional systemic therapies, were analysed. Eligible patients were ≥16 years of age receiving a first course of acitretin, ciclosporin, FAEs or methotrexate between 2007 and 2021 with ≥6 months’ follow-up. Effectiveness was defined as achieving absolute Psoriasis Area and Severity Index (aPASI) ≤ 2 reported ≥4 weeks after treatment start date until stop date. To identify baseline clinical variables associated with treatment effectiveness, we used multivariable logistic regression models estimating the adjusted odds ratio (aOR) of achieving aPASI ≤2. To describe drug persistence associated with ineffectiveness, occurrence of adverse events or other reasons of discontinuation, survival estimates with 95% confidence interval (CI) were obtained using a flexible parametric model. Results were obtained using multiple imputed data. Results In total, 5430 patients were included in the analysis: 1023 (19%) on acitretin, 1401 (26%) ciclosporin, 347 (6%) FAEs and 2659 (49%) methotrexate at registration. The proportion of patients who achieved aPASI ≤ 2 was lower with acitretin 118 (21%) compared with those on ciclosporin 233 (34%), FAEs 43 (30%) and methotrexate 372 (32%). Factors associated with ineffectiveness included prior experience to previous non-biologic systemic therapies (acitretin) [(aOR, (95% CI) 0.64 (0.42, 0.96)], male sex (methotrexate) 0.58 (0.46, 0.74), co-morbidities 0.70 (0.51, 0.97) and alcohol consumption (≤14 units per week) (ciclosporin) 0.70 (0.50, 0.98). Persistence associated with all reasons of discontinuation showed better survival for methotrexate compared with acitretin, ciclosporin and FAEs cohorts at 12 months [(Survival estimate (95% CI), 46.1 (44.0, 48.3), 31.9 (29.4, 34.7), 30.0 (27.5, 32.4) and 35.0 (29.9, 40.9)], respectively. Conclusions The real-world effectiveness and persistence of acitretin, ciclosporin, FAEs and methotrexate were generally low. Previous non-biologic systemic therapies, male sex, comorbidities and alcohol consumption were risk factors associated with treatment ineffectiveness

    Maternal Undernutrition Significantly Impacts Ovarian Follicle Number and Increases Ovarian Oxidative Stress in Adult Rat Offspring

    Get PDF
    BACKGROUND: We have shown recently that maternal undernutrition (UN) advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS: We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of maternal UN potentially contributing to premature ovarian ageing in offspring

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore