305 research outputs found

    Big Data in Oncology Nursing Research: State of the Science.

    Get PDF
    To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data. Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines. Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns. With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants

    Neutral weak currents in pion electroproduction on the nucleon

    Get PDF
    Parity violating asymmetry in inclusive scattering of longitudinally polarized electrons by unpolarized protons with π0\pi^0 or π+\pi^+ meson production, is calculated as a function of the momentum transfer squared Q2Q^2 and the total energy WW of the πN\pi N-system. This asymmetry, which is induced by the interference of the one-photon exchange amplitude with the parity-odd part of the Z0Z^0-exchange amplitude, is calculated for the γ(Z)+pN+π\gamma^*(Z^*)+p\to N+\pi processes (γ\gamma^* is a virtual photon and ZZ^* a virtual Z-boson) considering the Δ\Delta-contribution in the ss-channel, the standard Born contributions and vector meson (ρ\rho and ω\omega) exchanges in the tt-channel. Taking into account the known isotopic properties of the hadron electromagnetic and neutral currents, we show that the P-odd term is the sum of two contributions. The main term is model independent and it can be calculated exactly in terms of fundamental constants. It is found to be linear in Q2Q^2. The second term is a relatively small correction which is determined by the isoscalar component of the electromagnetic current. Near threshold and in the Δ\Delta-region, this isoscalar part is much smaller (in absolute value) than the isovector one: its contribution to the asymmetry depend on the polarization state (longitudinal or transverse) of the virtual photon.Comment: 30 pages 9 figure

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore