126 research outputs found

    Paraphrastic Reformulations in Spoken Corpora

    Get PDF
    International audienceOur work addresses the automatic detection of paraphrastic reformulation in French spoken corpora. The proposed approach is syn-tagmatic. It is based on specific markers and the specificities of the spoken language. Manual multi-dimensional annotation performed by two annotators provides fine-grained reference data. An automatic method is proposed in order to decide whether sentences contain or not paraphras-tic relations. The obtained results show up to 66.4% precision. Analysis of the manual annotations indicates that few paraphrastic segments show morphological modifications (inflection, derivation or compounding) and that the syntactic equivalence between the segments is seldom respected, as these usually belong to different syntactic categories

    Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

    Get PDF
    Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.This work was supported by the Medical Research Council (UK). S.F. was supported by a Herchel Smith Research Studentship and K.F. by an MRC Career Development Award. E.R.M is supported by the ERC Advanced Researcher award 323004–ONCOTREAT. P.H.M. is supported by Senior Investigator Awards from the Wellcome Trust and NIHR. The Cambridge Human Research Tissue Bank and A.W. are supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing at http://dx.doi.org/10.1038/nature19353

    Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element

    Get PDF
    Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers

    African Linguistics in Central and Eastern Europe, and in the Nordic Countries

    Get PDF
    Non peer reviewe
    corecore