377 research outputs found

    Clustering gene-expression data with repeated measurements

    Get PDF
    Clustering is a common methodology for the analysis of array data, and many research laboratories are generating array data with repeated measurements. We evaluated several clustering algorithms that incorporate repeated measurements, and show that algorithms that take advantage of repeated measurements yield more accurate and more stable clusters. In particular, we show that the infinite mixture model-based approach with a built-in error model produces superior results

    From co-expression to co-regulation: how many microarray experiments do we need?

    Get PDF
    BACKGROUND: Cluster analysis is often used to infer regulatory modules or biological function by associating unknown genes with other genes that have similar expression patterns and known regulatory elements or functions. However, clustering results may not have any biological relevance. RESULTS: We applied various clustering algorithms to microarray datasets with different sizes, and we evaluated the clustering results by determining the fraction of gene pairs from the same clusters that share at least one known common transcription factor. We used both yeast transcription factor databases (SCPD, YPD) and chromatin immunoprecipitation (ChIP) data to evaluate our clustering results. We showed that the ability to identify co-regulated genes from clustering results is strongly dependent on the number of microarray experiments used in cluster analysis and the accuracy of these associations plateaus at between 50 and 100 experiments on yeast data. Moreover, the model-based clustering algorithm MCLUST consistently outperforms more traditional methods in accurately assigning co-regulated genes to the same clusters on standardized data. CONCLUSIONS: Our results are consistent with respect to independent evaluation criteria that strengthen our confidence in our results. However, when one compares ChIP data to YPD, the false-negative rate is approximately 80% using the recommended p-value of 0.001. In addition, we showed that even with large numbers of experiments, the false-positive rate may exceed the true-positive rate. In particular, even when all experiments are included, the best results produce clusters with only a 28% true-positive rate using known gene transcription factor interactions

    A semi-parametric Bayesian model for unsupervised differential co-expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differential co-expression analysis is an emerging strategy for characterizing disease related dysregulation of gene expression regulatory networks. Given pre-defined sets of biological samples, such analysis aims at identifying genes that are co-expressed in one, but not in the other set of samples.</p> <p>Results</p> <p>We developed a novel probabilistic framework for jointly uncovering contexts (i.e. groups of samples) with specific co-expression patterns, and groups of genes with different co-expression patterns across such contexts. In contrast to current clustering and bi-clustering procedures, the implicit similarity measure in this model used for grouping biological samples is based on the clustering structure of genes within each sample and not on traditional measures of gene expression level similarities. Within this framework, biological samples with widely discordant expression patterns can be placed in the same context as long as the co-clustering structure of genes is concordant within these samples. To the best of our knowledge, this is the first method to date for unsupervised differential co-expression analysis in this generality. When applied to the problem of identifying molecular subtypes of breast cancer, our method identified reproducible patterns of differential co-expression across several independent expression datasets. Sample groupings induced by these patterns were highly informative of the disease outcome. Expression patterns of differentially co-expressed genes provided new insights into the complex nature of the ER<it>α </it>regulatory network.</p> <p>Conclusions</p> <p>We demonstrated that the use of the co-clustering structure as the similarity measure in the unsupervised analysis of sample gene expression profiles provides valuable information about expression regulatory networks.</p

    Discovering transcriptional modules by Bayesian data integration

    Get PDF
    Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs

    WebGimm: An integrated web-based platform for cluster analysis, functional analysis, and interactive visualization of results

    Get PDF
    Cluster analysis methods have been extensively researched, but the adoption of new methods is often hindered by technical barriers in their implementation and use. WebGimm is a free cluster analysis web-service, and an open source general purpose clustering web-server infrastructure designed to facilitate easy deployment of integrated cluster analysis servers based on clustering and functional annotation algorithms implemented in R. Integrated functional analyses and interactive browsing of both, clustering structure and functional annotations provides a complete analytical environment for cluster analysis and interpretation of results. The Java Web Start client-based interface is modeled after the familiar cluster/treeview packages making its use intuitive to a wide array of biomedical researchers. For biomedical researchers, WebGimm provides an avenue to access state of the art clustering procedures. For Bioinformatics methods developers, WebGimm offers a convenient avenue to deploy their newly developed clustering methods. WebGimm server, software and manuals can be freely accessed at http://ClusterAnalysis.org/

    Bayesian modeling of networks in complex business intelligence problems

    Full text link
    Complex network data problems are increasingly common in many fields of application. Our motivation is drawn from strategic marketing studies monitoring customer choices of specific products, along with co-subscription networks encoding multiple purchasing behavior. Data are available for several agencies within the same insurance company, and our goal is to efficiently exploit co-subscription networks to inform targeted advertising of cross-sell strategies to currently mono-product customers. We address this goal by developing a Bayesian hierarchical model, which clusters agencies according to common mono-product customer choices and co-subscription networks. Within each cluster, we efficiently model customer behavior via a cluster-dependent mixture of latent eigenmodels. This formulation provides key information on mono-product customer choices and multiple purchasing behavior within each cluster, informing targeted cross-sell strategies. We develop simple algorithms for tractable inference, and assess performance in simulations and an application to business intelligence

    Gene Expression and Discovery During Lens Regeneration in Mouse: Regulation of Epithelial to Mesenchymal Transition and Lens Differentiation

    Get PDF
    Purpose: It has been shown that after extracapsular lens removal by anterior capsulotomy in the mouse, the lens can be regenerated. However, as the capsular bag is filled with fibers, epithelial to mesenchymal transition (EMT), an event which is common after cataract surgery as well, takes place during early stages. This study, using a unique mouse model, was undertaken to identify novel regulators and networks in order to more clearly understand secondary cataracts at the molecular level

    Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments

    Get PDF
    BACKGROUND: The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework. RESULTS: We present a novel Bayesian moderated-T, which we show to perform favorably in simulations, with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In simulations, the new method achieved greater power while correctly estimating the true proportion of false positives, and in the analysis of two publicly-available "spike-in" experiments, the new method performed favorably compared to all tested alternatives. We also applied our method to two experimental datasets and discuss the additional biological insights as revealed by our method in contrast to the others. The R-source code for implementing our algorithm is freely available at . CONCLUSION: We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength of balancing two important factors in the analysis of microarray data: the degree of independence of variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship between variance and signal intensity. When this variance-intensity relationship is weak or does not exist, IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly applied to any array platform and experimental design. Together, these properties show IBMT to be a valuable option in the analysis of virtually any microarray experiment

    Genomics Portals: integrative web-platform for mining genomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems.</p> <p>Results</p> <p>Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis.</p> <p>Conclusion</p> <p>The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at <url>http://GenomicsPortals.org</url>.</p

    A new method to remove hybridization bias for interspecies comparison of global gene expression profiles uncovers an association between mRNA sequence divergence and differential gene expression in Xenopus

    Get PDF
    The recent sequencing of a large number of Xenopus tropicalis expressed sequences has allowed development of a high-throughput approach to study Xenopus global RNA gene expression. We examined the global gene expression similarities and differences between the historically significant Xenopus laevis model system and the increasingly used X.tropicalis model system and assessed whether an X.tropicalis microarray platform can be used for X.laevis. These closely related species were also used to investigate a more general question: is there an association between mRNA sequence divergence and differences in gene expression levels? We carried out a comprehensive comparison of global gene expression profiles using microarrays of different tissues and developmental stages of X.laevis and X.tropicalis. We (i) show that the X.tropicalis probes provide an efficacious microarray platform for X.laevis, (ii) describe methods to compare interspecies mRNA profiles that correct differences in hybridization efficiency and (iii) show independently of hybridization bias that as mRNA sequence divergence increases between X.laevis and X.tropicalis differences in mRNA expression levels also increase
    corecore