8,325 research outputs found

    Observer-based networked control for continuous-time systems with random sensor delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H∞ performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor George Yin under the direction of Editor Ian R. Petersen. This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China (60774047, 60674055) and the Taishan Scholar Programs Foundation of Shandong Province, China

    Is there an optimal vitamin D status for immunity in athletes and military personnel?

    Get PDF
    Vitamin D is mainly obtained through sunlight ultraviolet-B (UVB) exposure of the skin, with a small amount typically coming from the diet. It is now clear that Vitamin D has important roles beyond its well-known effects on calcium and bone homeostasis. Immune cells express the Vitamin D receptor, including antigen presenting cells, T cells and B cells, and these cells are all capable of synthesizing the biologically active Vitamin D metabolite, 1, 25 dihydroxy Vitamin D. There has been growing interest in the benefits of supplementing Vitamin D as studies report Vitamin D insufficiency (circulating 25(OH)D 75 nmol/L

    Electroanatomic Mapping to determine Scar Regions in patients with Atrial Fibrillation

    Full text link
    Left atrial voltage maps are routinely acquired during electroanatomic mapping in patients undergoing catheter ablation for atrial fibrillation. For patients, who have prior catheter ablation when they are in sinus rhythm, the voltage map can be used to identify low voltage areas using a threshold of 0.2 - 0.45 mV. However, such a voltage threshold for maps acquired during atrial fibrillation has not been well established. A prerequisite for defining a voltage threshold is to maximize the topologically matched low voltage areas between the electroanatomic mapping acquired during atrial fibrillation and sinus rhythm. This paper demonstrates a new technique to improve the sensitivity and specificity of the matched low voltage areas. This is achieved by computing omni-directional bipolar voltages and applying Gaussian Process Regression based interpolation to derive the atrial fibrillation map. The proposed method is evaluated on a test cohort of 7 male patients, and a total of 46,589 data points were included in analysis. The low voltage areas in the posterior left atrium and pulmonary vein junction are determined using the standard method and the proposed method. Overall, the proposed method showed patient-specific sensitivity and specificity in matching low voltage areas of 75.70% and 65.55% for a geometric mean of 70.69%. On average, there was an improvement of 3.00% in the geometric mean, 7.88% improvement in sensitivity, 0.30% improvement in specificity compared to the standard method. The results show that the proposed method is an improvement in matching low voltage areas. This may help develop the voltage threshold to better identify low voltage areas in the left atrium for patients in atrial fibrillation

    Electroanatomic Mapping to Determine Scar Regions in Patients with Atrial Fibrillation

    Get PDF
    Left atrial voltage maps are routinely acquired during electroanatomic mapping in patients undergoing catheter ablation for atrial fibrillation (AF). For patients, who have prior catheter ablation when they are in sinus rhythm (SR), the voltage map can be used to identify low voltage areas (LVAs) using a threshold of 0.2 - 0.45 mV. However, such a voltage threshold for maps acquired during AF has not been well established. A prerequisite for defining a voltage threshold is to maximize the topologically matched LVAs between the electroanatomic mapping acquired during AF and SR. This paper demonstrates a new technique to improve the sensitivity and specificity of the matched LVA. This is achieved by computing omni-directional bipolar voltages and applying Gaussian Process Regression based interpolation to derive the AF map. The proposed method is evaluated on a test cohort of 7 male patients, and a total of 46,589 data points were included in analysis. The LVAs in the posterior left atrium and pulmonary vein junction are determined using the standard method and the proposed method. Overall, the proposed method showed patient-specific sensitivity and specificity in matching LVAs of 75.70% and 65.55% for a geometric mean of 70.69%. On average, there was an improvement of 3.00% in the geometric mean, 7.88% improvement in sensitivity, 0.30% improvement in specificity compared to the standard method. The results show that the proposed method is an improvement in matching LVA. This may help develop the voltage threshold to better identify LVA in the left atrium for patients in AF

    Phytoplankton Response to Intrusions of Slope Water on the West Florida Shelf: Models and Observations

    Get PDF
    Previous hypotheses had suggested that upwelled intrusions of nutrient-rich Gulf of Mexico slope water onto the West Florida Shelf (WFS) led to formation of red tides of Karenia brevis. However, coupled biophysical models of (1) wind- and buoyancy-driven circulation, (2) three phytoplankton groups (diatoms, K. brevis, and microflagellates), (3) these slope water supplies of nitrate and silicate, and (4) selective grazing stress by copepods and protozoans found that diatoms won in one 1998 case of no light limitation by colored dissolved organic matter (CDOM). The diatoms lost to K. brevis during another CDOM case of the models. In the real world, field data confirmed that diatoms were indeed the dominant phytoplankton after massive upwelling in 1998, when only a small red tide of K. brevis was observed. Over a 7-month period of the CDOM-free scenario the simulated total primary production of the phytoplankton community was ∌1.8 g C m−2 d−1 along the 40-m isobath of the northern WFS, with the largest accumulation of biomass on the Florida Middle Ground (FMG). Despite such photosynthesis, these models of the WFS yielded a net source of CO2 to the atmosphere during spring and summer and suggested a small sink in the fall. With diatom losses of 90% of their daily carbon fixation to herbivores the simulation supported earlier impressions of a short, diatom-based food web on the FMG, where organic carbon content of the surficial sediments is tenfold those of the surrounding seabeds. Farther south, the simulated near-bottom pools of ammonium were highest in summer, when silicon regeneration was minimal, leading to temporary Si limitation of the diatoms. Termination of these upwelled pulses of production by diatoms and nonsiliceous microflagellates mainly resulted from nitrate exhaustion in the model, however, mimicking most del15PON observations in the field. Yet, the CDOM-free case of the models failed to replicate the observed small red tide in December 1998, tagged with the del15N signature of nitrogen fixation. A large red tide of K. brevis did form in the CDOM-rich case, when estuarine supplies of CDOM favored the growth of the shade-adapted, ungrazed dinoflagellates. The usual formation of large harmful algal blooms of \u3e1 ug chl L−1 (105 cells L−1) in the southern part of the WFS, between Tampa Bay and Charlotte Harbor, must instead depend upon local aeolian and estuarine supplies of nutrients and CDOM sun screen, not those from the shelf break. In the absence of slope water supplies, local upwelling instead focuses nitrate-poor innocula of co-occurring K. brevis and nitrogen fixers at coastal fronts for both aggregation and transfer of nutrients between these phytoplankton groups

    Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions

    Get PDF
    Agricultural terraced landscapes, which are important historical heritage sites (e.g., UNESCO or Globally Important Agricultural Heritage Systems (GIAHS) sites) are under threat from increased soil degradation due to climate change and land abandonment. Remote sensing can assist in the assessment and monitoring of such cultural ecosystem services. However, due to the limitations imposed by rugged topography and the occurrence of vegetation, the application of a single high-resolution topography (HRT) technique is challenging in these particular agricultural environments. Therefore, data fusion of HRT techniques (terrestrial laser scanning (TLS) and aerial/terrestrial structure from motion (SfM)) was tested for the first time in this context (terraces), to the best of our knowledge, to overcome specific detection problems such as the complex topographic and landcover conditions of the terrace systems. SfM–TLS data fusion methodology was trialed in order to produce very high-resolution digital terrain models (DTMs) of two agricultural terrace areas, both characterized by the presence of vegetation that covers parts of the subvertical surfaces, complex morphology, and inaccessible areas. In the unreachable areas, it was necessary to find effective solutions to carry out HRT surveys; therefore, we tested the direct georeferencing (DG) method, exploiting onboard multifrequency GNSS receivers for unmanned aerial vehicles (UAVs) and postprocessing kinematic (PPK) data. The results showed that the fusion of data based on different methods and acquisition platforms is required to obtain accurate DTMs that reflect the real surface roughness of terrace systems without gaps in data. Moreover, in inaccessible or hazardous terrains, a combination of direct and indirect georeferencing was a useful solution to reduce the substantial inconvenience and cost of ground control point (GCP) placement. We show that in order to obtain a precise data fusion in these complex conditions, it is essential to utilize a complete and specific workflow. This workflow must incorporate all data merging issues and landcover condition problems, encompassing the survey planning step, the coregistration process, and the error analysis of the outputs. The high-resolution DTMs realized can provide a starting point for land degradation process assessment of these agriculture environments and supplies useful information to stakeholders for better management and protection of such important heritage landscapes

    New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    Get PDF
    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5â€Č-bispyrene and 3â€Č-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5â€Č-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5â€Č-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing

    Polyubiquitin binding to ABIN1 is required to prevent autoimmunity

    Get PDF
    The protein ABIN1 possesses a polyubiquitin-binding domain homologous to that present in nuclear factor kappa B (NF-kappa B) essential modulator (NEMO), a component of the inhibitor of NF-kappa B (I kappa B) kinase (IKK) complex. To address the physiological significance of polyubiquitin binding, we generated knockin mice expressing the ABIN1[D485N] mutant instead of the wild-type (WT) protein. These mice developed all the hallmarks of autoimmunity, including spontaneous formation of germinal centers, isotype switching, and production of autoreactive antibodies. Autoimmunity was suppressed by crossing to MyD88(-/-) mice, demonstrating that toll-like receptor (TLR)-MyD88 signaling pathways are needed for the phenotype to develop. The B cells and myeloid cells of the ABIN1[D485N] mice showed enhanced activation of the protein kinases TAK, IKK-alpha/beta, c-Jun N-terminal kinases, and p38 alpha mitogen-activated protein kinase and produced more IL-6 and IL-12 than WT. The mutant B cells also proliferated more rapidly in response to TLR ligands. Our results indicate that the interaction of ABIN1 with polyubiquitin is required to limit the activation of TLR-MyD88 pathways and prevent autoimmunity

    Photocatalyzed hydrogen evolution from water by a composite catalyst of NH2-MIL-125(Ti) and surface nickel(II) species

    Get PDF
    A composite of the metal–organic framework (MOF) NH2-MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v¿% aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v¿% water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2 g(Ni)-1 h-1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.Peer ReviewedPostprint (author's final draft

    Interaction of anticancer reduced Schiff base coumarin derivatives with human serum albumin investigated by fluorescence quenching and molecular modeling

    Get PDF
    The specific binding of five reduced Schiff base derived 7-amino-coumarin compounds with antitumor activity to human serum albumin, the principal binding protein of blood, was studied by fluorescence spectroscopy. Their conditional binding constants were computed and the reversible binding at the Sudlow’s site I was found to be strong (KD ~ 0.03-2.09 M). Based on the data albumin can provide a depot for the compounds and is responsible for their biodistribution and transport processes. The experimental data is complemented by protein– ligand docking calculations for two representatives which support the observations. The proton dissociation constants of the compounds were also determined by UV-Vis spectrophotometric and fluorometric titrations to obtain the actual charges and distribution of the species in the various protonation states at physiological pH
    • 

    corecore