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ABSTRACT

Vitamin D is mainly obtained through sunlight ultraviolet-B
(UVB) exposure of the skin, with a small amount typically
coming from the diet. It is now clear that vitamin D has
important roles beyond its well-known effects on calcium and
bone homeostasis. Immune cells express the vitamin D recep-
tor, including antigen presenting cells, T cells and B cells, and
these cells are all capable of synthesizing the biologically
active vitamin D metabolite, 1, 25 dihydroxy vitamin D. There
has been growing interest in the benefits of supplementing
vitamin D as studies report vitamin D insufficiency (circulat-
ing 25(OH)D < 50 nmol/L) in more than half of all athletes
and military personnel tested during the winter, when skin
sunlight UVB is negligible. The overwhelming evidence sup-
ports avoiding vitamin D deficiency (25(OH)D < 30 nmol/L)
to maintain immunity and prevent upper respiratory illness
(URI) in athletes and military personnel. Recent evidence
supports an optimal circulating 25(OH)D of 75 nmol/L to pre-
vent URI and enhance innate immunity and mucosal immunity
and bring about anti-inflammatory actions through the induc-
tion of regulatory T cells and the inhibition of pro-inflamma-
tory cytokine production. We provide practical recommenda-
tions for how vitamin D sufficiency can be achieved in most
individuals by safe sunlight exposure in the summer and daily
1, 000 IU vitamin D3 supplementation in the winter. Studies
are required in athletes and military personnel to determine
the impact of these recommendations on immunity and URI;
and, to demonstrate the purported benefit of achieving
25(OH)D > 75 nmol/L. 

Keywords: Exercise; Immune; Infection; Cholecalciferol;
Ergocalciferol

1. INTRODUCTION

Stress-induced immune dysregulation is widely acknowl-
edged to have negative implications for health (48). Those
working in the field of exercise immunology have shown us
that individuals who undertake heavy physical exertion, par-
ticularly when combined with periods of psychological stress,
nutritional inadequacy and sleep disruption (e.g. athletes and
military personnel), risk compromising host defence and
increasing their susceptibility to respiratory viral infections
such as the common cold and possibly to other infectious
microorganisms (58, 136, 137). In 1981, the British general
practitioner and celebrated epidemiologist, R. Edgar Hope-
Simpson was the first to hypothesise that respiratory viral
infections (e.g. epidemic influenza) have a ‘seasonal stimulus’
intimately associated with solar radiation. He observed an
increased incidence of respiratory viral infections during the
winter that appeared to be more strongly related to the amount
of solar radiation than the presence of anti-viral antibodies.
The nature of this ‘seasonal stimulus’ remained undiscovered
until the important immuno-modulatory effects of the sun-
light-dependent secosteroid vitamin D were fully recognised
(Figure 1) (24); indeed, vitamin D levels in the human body
are known to fall to a nadir during the peak influenza season
and peak when influenza is scarce (95).

Vitamin D refers to a group of fat-soluble secosteroids respon-
sible for enhancing intestinal absorption of calcium, iron,
magnesium, phosphate and zinc (63). In humans, vitamin D
can be obtained either from sunlight exposure at the skin or in
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Figure 1. The association between circulating 25(OH)D (closed cir-
cles) and respiratory infection (open circles) in British adults. Adapted
from Berry et al. (16). Upper dotted line indicates vitamin D sufficiency
threshold (50 nmol/L) and lower dotted line indicates vitamin D defi-
ciency threshold (30 nmol/L) as suggested by the Institute of Medi-
cine (66).
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the foods we eat and by consuming dietary supplements. Vita-
min D production as a result of sunlight ultraviolet (UV) B
radiation penetrating the skin typically provides 80-100% of
the body’s vitamin D requirements. In humans, the most
important compounds in the vitamin D group are vitamin D3
(also known as cholecalciferol) and vitamin D2 (ergocalcifer-
ol). Both cholecalciferol and ergocalciferol can be ingested
from the daily diet and from supplements. Unlike other fat-
and water-soluble vitamins, the body can also synthesise vita-
min D (specifically cholecalciferol) in the skin, from choles-
terol, when exposure from sunlight UVB is adequate. Evi-
dence indicates the synthesis of vitamin D from sunlight UVB
exposure is regulated by a negative feedback loop that pre-
vents toxicity, but because of uncertainty about the cancer risk
from overexposure to sunlight, currently no recommendations
are issued by national bodies regarding the amount of sunlight
exposure required to meet vitamin D requirements. Accord-
ingly, the recommended daily dietary intake of vitamin D for
adults (5 µg or 200 IU in the European Union and 15 µg or
600 IU in the USA) assumes that no synthesis occurs and all
of a person's vitamin D is from food intake, although that will
rarely occur in practice. As vitamin D can be synthesised in
adequate amounts by humans and most other mammals
exposed to sunlight, it is not strictly a vitamin (i.e. an organic
compound and a vital nutrient that an organism requires in
limited amounts), and following its hydroxylation in the body
to 1, 25 dihydroxy vitamin D (1, 25(OH)2D) it may be consid-
ered a hormone as its synthesis and biological activity occur
in different locations. Its discovery in the 1930s can be attrib-
uted to key contributions by the chemist Adolf Windaus that
included the elucidation of the chemical structures of vitamin
D (144).

Inadequate nutrition in terms of
dietary energy, macro- or
micronutrients is a potential
cause of depressed immune
function in those engaging in
heavy training regimens (137).
While most individuals under-
going heavy training who con-
sume a varied diet sufficient to
meet their energy needs should
meet their micronutrient
requirements, one exception can
be the failure to achieve ade-
quate vitamin D status during
the winter months due to limited
vitamin D synthesis from
reduced sunlight exposure
(106). Therefore, dietary
sources of vitamin D and oral
vitamin D supplementation are
of particular importance during
the winter as will be discussed
in this review. 

The focus of this review is on
the effects of vitamin D on
immune function and suscepti-
bility to infection and its poten-

tial importance for health maintenance in athletes and military
personnel. After covering the structure, sources, metabolism
and measurement of vitamin D we will present evidence
showing that vitamin D deficiency (defined by the Institute of
Medicine (IoM) as a circulating 25(OH)D concentration < 30
nmol/L and used hereafter) occurs commonly in athletes and
military personnel. The influence of vitamin D status on
innate and adaptive immunity, wound repair and respiratory
infection with specific reference to those undergoing heavy
training schedules will follow. Then we will discuss whether a
circulating 25(OH)D level ≥ 75 nmol/L represents an optimal
vitamin D status for immune function and host defence with
some simple practical guidance on safe summer sunlight
exposure and safe oral vitamin D supplementation during the
autumn and winter. The reader is referred to other recent
reviews for a consideration of the influence of vitamin D on
bone health and risk of fractures, cancer prevention, hyperten-
sion and mortality (15, 20) and the emerging role of vitamin D
in optimising muscle function and athletic performance (6, 80,
99, 105, 106, 123, 130).

1.1 Vitamin D structure and sources
All forms of vitamin D belong to a family of lipids called sec-
osteroids which are very similar in structure to steroids except
that two of the B-ring carbon atoms of the typical four steroid
rings are not joined, whereas in steroids they are (Figure 2A).
The biologically active metabolite, 1, 25(OH)2D, acts very
much like a steroid, binding to nuclear receptors and modulat-
ing gene expression and subsequently the synthesis of specific
proteins.

Figure 2. General structure of a secosteroid compared with that of a traditional steroid (A) and the struc-
ture of the vitamin D secosteroids (B): Ergocalciferol (D2) is produced by UV irradiation of ergosterol, a
membrane sterol which is produced by some kinds of plankton, invertebrates, yeasts and fungi. Chole-
calciferol (D3) is produced by ultraviolet B irradiation of 7-dehydrocholesterol in the skin which supplies
80-100% of the body’s vitamin D requirements. Also shown (C) is the biologically active form of vitamin D,
1, 25-dihydroxy-vitamin D (1, 25(OH)2D), known as calcitriol or calciferol.
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Two forms of vitamin D can be obtained from dietary sources
(Figure 2B): vitamin D3 (cholecalciferol) and vitamin D2
(ergocalciferol). While vitamin D3 is found in food from ani-
mal origin, such as oily fish, egg yolk, liver and milk, vitamin
D2 is present in some plants and mushrooms (derived from
UVB exposure of fungi and yeast ergosterols). Some foods
including cereals, margarine and dairy products may be forti-
fied, usually with vitamin D3. The fractional absorption of
both forms of vitamin D from lipid micelles (with the aid of
bile salts) in the gut is about 50%. After uptake by intestinal
mucosal cells they are incorporated into chylomicrons and
enter the circulation via the lymphatic system.

Under optimal conditions of skin sunlight exposure, vitamin
D3 production from UVB-mediated conversion of 7-dehydro-
cholesterol in the plasma membrane of skin cells provides 80-

100% of the body’s vitamin D requirements (78). This process
is rapid and the production of vitamin D3 in the skin after only
a few minutes of appropriate sunlight easily exceeds dietary
sources. The UVB radiation (wavelength of 290-320 nm) pro-
motes photolytic cleavage of 7-dehydrocholesterol into pre-
vitamin D in the epidermis, which is subsequently converted
into vitamin D3 by a spontaneous thermal isomerisation.
Newly synthesised vitamin D3 (and its metabolites) are bound
to vitamin D-binding protein (VDBP) for systemic transport.
Vitamin D2 is more rapidly metabolised than vitamin D3, is
less well bound to VDBP and therefore has a shorter half-life.

1.2 Metabolism of vitamin D
Vitamin D needs to be hydroxylated twice to achieve the bio-
logically active form, 1, 25(OH)2D (Figure 2C). The endoge-
nously synthesised vitamin D3 and diet-derived D2 and D3

Figure 3. Mechanisms for innate and adaptive immune responses to vitamin D. Ergocalciferol (vitamin D2) from the diet and cholecalciferol (vita-
min D3) from the diet or produced from the action of UVB on the skin are metabolised in the liver to form 25-hydroxyvitamin D (25(OH)D), the
main circulating form of vitamin D. Target cells such as monocytes, macrophages and dendritic cells expressing the mitochondrial vitamin D-
activating enzyme 1-α hydroxylase (CYP27B1) and the cytoplasmic vitamin D receptor (VDR) can then utilise 25(OH)D for intracrine responses
via localised conversion to 1, 25-dihydroxy-vitamin D (1, 25(OH)2D; calcitriol, shown in the Figure as 1,25D for intracellular locations). In mono-
cytes and macrophages this promotes antibacterial responses to infection. In dendritic cells, intracrine synthesis of 1, 25(OH)2D inhibits dendrit-
ic cell maturation, thereby modulating helper T-helper (Th) cell function. Th cell responses to 25(OH)D may also be mediated in a paracrine fash-
ion, via the actions of dendritic cell-generated 1, 25(OH)2D. Intracrine immune effects of 25(OH)D also occur in epithelial cells expressing the
VDR and the 1-α hydroxylase (CYP27B1). However, other leukocytes such as neutrophils and natural killer (NK) cells do not appear to express
CYP27B1 and are therefore likely to be directly affected by circulating levels of 1, 25(OH)2D synthesised by the kidneys or locally produced in
and secreted from tissue macrophages and dendritic cells. VDR-expressing Th cells are also potential targets for systemic 1, 25(OH)2D,
although intracrine mechanisms have also been proposed. In a similar fashion, epithelial cells can respond in an intracrine fashion to 25(OH)D,
but may also respond to systemic 1, 25(OH)2D to promote antibacterial responses.
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must first be hydroxylated in the liver into 25(OH)D (calcidiol
or calcifediol) at the carbon 25-position by the enzyme, 25-
hydroxylase. The main storage form of vitamin D, 25(OH)D
is found in muscles and adipose tissue, and 25(OH)D is the
major circulating metabolite of vitamin D, with a half-life of
2-3 weeks. Therefore, the total plasma concentration of
25(OH)D is considered to be the primary indicator of vitamin
D status (11).

In the second hydroxylation, 25(OH)D is converted in the kid-
ney to the biologically active form, 1, 25(OH)2D (calcitriol or
calciferol), by 1-α-hydroxylase, an enzyme which is stimulat-
ed by parathyroid hormone (PTH) when serum calcium and
phosphate concentrations fall below their normal physiologi-
cal range of 2.1–2.6 mmol/L and 1.0–1.5 mmol/L, respective-
ly. 1, 25(OH)2D, is released into the circulation from the kid-
ney which is considered as a vital endocrine source of hor-
mone (Figure 3). Normal concentrations of circulating 1,
25(OH)2D are approximately 50-250 pmol/L, about 1000
times lower than its precursor, 25(OH)D; the plasma half-life
of 1, 25(OH)2D is 4-6 hours. Some cells other than kidney
cells also express 1-α-hydroxylase and have the enzymatic
machinery to convert 25(OH)D to 1, 25(OH)2D in non-renal
compartments including cells of the immune system as illus-
trated in Figure 3 (8). Importantly, 1, 25(OH)2D limits its own
activity in a negative feedback loop by inducing 24-hydroxy-
lase, which converts 1, 25(OH)2D into the biologically inac-
tive metabolite, 1, 24, 25(OH)3D. In addition, 1, 25(OH)2D
also inhibits the expression of renal 1-α-hydroxylase. This
negative feedback loop reduces the likelihood of hypercal-
caemia by preventing excessive vitamin D signalling, thus
maintaining bone health.

1.3 Mode of action of 1, 25(OH)2D
1, 25(OH)2D exerts its functions by acting as a modulator of
over 900 genes (73). Circulating 1, 25(OH)2D passes through
the plasma membrane of target cells and binds to the vitamin
D receptor (VDR) in the cytoplasm. The VDR is a nuclear
receptor and ligand-activated transcription factor. It is a mem-
ber of the superfamily of nuclear hormone receptors and it is
composed of an α-helical ligand-binding domain and a highly
conserved DNA binding domain. High-affinity binding of 1,
25(OH)2D to the α-helical ligand-binding domain of VDR
activates transcription by heterodimerization with the retinoid
X receptor (RXR), which is essential for the high-affinity
DNA binding to cognate vitamin D response elements
(VDRE). The 1, 25(OH)2D-VDR-RXR heterodimer translo-
cates to the nucleus where it binds to VDRE located in the
regulatory regions of 1, 25(OH)2D target genes and then
induces expression of the vitamin D responsive genes (8). 

1.4 Vitamin D measurement
Measurement of plasma or serum 25(OH)D concentration is
widely used in clinical practice and research reports to assess
vitamin D status as 25(OH)D is the major circulating metabo-
lite of vitamin D in whole blood. It has been demonstrated
that 25(OH)D in whole blood, serum or plasma is stable at
room temperature or when stored at -20°C and is unaffected
by multiple freeze-thaw cycles (2, 7, 143). For example, stor-
age of serum samples for up to 3 years at -20°C does not
affect serum 25(OH)D concentrations (2) and 25(OH)D con-

centrations in serum samples that have been thawed and
refrozen up to four times are still reliable (7).

Plasma or serum 25(OH)D concentration can be measured by
competitive protein binding assay, immunoassay, high pres-
sure liquid chromatography (HPLC) and liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) (40). Current
25(OH)D ELISAs employ polyclonal or monoclonal antibod-
ies that bind specifically to human 25(OH)D. Nevertheless,
the competition between the 25(OH)D specific antibodies and
VDBP in plasma samples makes these assays difficult to con-
trol (29, 38). The plasma 25(OH)D concentration cannot be
measured accurately unless it is released from VDBP and the
strong protein binding of 25(OH)D requires the employment
of suitable conditions to release 25(OH)D from VDBP (40,
135). In addition, most commercial immunoassays cannot
measure the concentration of 25(OH)D2 and 25(OH)D3 inde-
pendently. It has been reported that there was an underestima-
tion of plasma 25(OH)D2 concentration in several commercial
immunoassays which resulted in marked variations of the
total plasma 25(OH)D levels (D2 and D3) (40, 135). The LC-
MS/MS method is generally considered to be the gold stan-
dard method for the measurement of plasma or serum
25(OH)D levels because isotope dilution LC-MS/MS method
can simultaneously and accurately quantitate both 25(OH)D2
and 25(OH)D3 (135, 146). Furthermore, both 25(OH)D2 and
25(OH)D3 can be extracted from plasma samples using isolute
C18 solid phase extraction cartridges in the LC-MS/MS assay.
Nonetheless, the use of LC-MS/MS is not without limitations.
Significant inter-assay variability of 16.4% has been reported
for 25(OH)D measurement using in-house standards and can
only be avoided if laboratories use common standards (26) as
well as adopt the similar preparation and calibration methods
(39). 

1.5 Classical biological role of vitamin D for bone health
The classic function of vitamin D is to maintain the health of
bones and teeth by influencing calcium homeostasis. Vitamin
D influences bone health by upregulating the expression of
genes for several calcium transport proteins that enhance cal-
cium absorption from the diet in the small intestine and
increase calcium reabsorption in the renal tubules (in associa-
tion with elevated PTH). Vitamin D also stimulates bone cell
differentiation to promote calcium homeostasis and bone
health (63). In the general population, individuals who main-
tain higher vitamin D status have higher bone mineral density
in the hip and lumbar spine (63). In physically active popula-
tions, sufficient vitamin D is important for the prevention of
stress fractures. For example, in Finnish military recruits
stress fracture risk was 3.6 times higher in those with relative-
ly low vitamin D status (25(OH)D concentration < 75
nmol/L) compared to those with higher status (118). A ran-
domised, placebo-controlled, double-blind trial of vitamin D3
supplementation (daily 800 IU with 2 g calcium) found a 20%
reduction in stress fracture incidence in female US naval
recruits compared with those taking a placebo (79).

1.6 Is there a consensus of opinion on vitamin D status
classifications for immune health?
The simple answer to this question is ‘no’. The IoM has rec-
ommended a circulating 25(OH)D level above 50 nmol/L to
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achieve ‘good bone health’ in virtually all of the population
but there are no such classifications for vitamin D status in
relation to immunity and resistance to common infections
(Table 1) (117). In fact, right now there is still no definitive
consensus of opinion on the thresholds for vitamin D status

and bone health. For example, the circulating
25(OH)D level below which represents deficiency
for bone health has been proposed as 30 nmol/L by
the IoM (117) but 50 nmol/L by the Endocrine
Society and a number of world-leading
researchers in the field (20, 64). Furthermore,
based on the studies relating 25(OH)D with circu-
lating PTH levels, as well as other evidence for
reducing risk of fracture, improving muscle
strength and preventing chronic diseases, the

Endocrine Society recommends that vitamin D sufficiency
should be defined as circulating 25(OH)D > 75 nmol/L (64).
Also, a recent and comprehensive review that summarises the
various studies that have attempted to evaluate threshold lev-
els for circulating 25(OH)D levels in relation to bone mineral

 

Table 2. Vitamin D status in athletes and military personnel. 

Season Location 
(latitude) Population N Age 

(years) 

Circulating 25(OH)D concentration (nmol/L) 

Ref 
% < 30 nmol/L1 

Deficient 
% < 50 nmol/L1 

Insufficient 
% < 75 nmol/L2 

Suboptimal 

Winter 
        

 Finland  
(60 - 70 ºN) 

Finnish military 
recruits 

196 18 - 28 19% < 25 78% < 40 - Laaksi et al.(77) 

 Liverpool, UK 
(53 °N) 

Elite soccer players 20 24 - 65% - Morton et al. 
(100) 

 Liverpool, UK 
(53 °N) 

UK club athletes 30 20 - 24 20% 57% - Close et al. (34) 

 Liverpool, UK 
(53 °N) 

Professional UK 
athletes 

61 18 - 27 35%  64% - Close et al.(33) 

 Loughborough, 
UK (53 ºN) 

Recreational to elite 
athletes 

225 21 8% 38% - He et al. (56) 
 

 Barcelona  
(41 ºN) 

Professional 
basketball players 

21 25 10% < 25 57% - Garcia 
& Guisado(42) 

Autumn         
 Washington, 

USA (47 °N) 
Collegiate athletes 39 18 - 33 - 3% 26% < 80 Storlie et al. (127) 

 Australia  
(35 °S) 

Australian female 
gymnasts 

18 10 - 17 - 33% 83%  Lovell (87) 

Summer         

 Finland  
(60 - 70 ºN) 

Finnish military 
recruits 

756 18 - 29 - 4% < 40 - Laaksi et al.(76) 

 

     

  
    

 

    

 
    

 
    

 
    

 

 California, 
USA (34 °N) 

Collegiate athletes 223 - - 3% 34% < 80  Villacis et 
al.(133) 

 Doha, Qatar 
(25 ºN) 

Middle-eastern 
sportsmen 

93 13 - 45 59% < 25 91% 100% Hamilton et 
al.(51) 

 Doha, Qatar 
(25 ºN) 

Professional Qatar 
based footballers 

342 16 - 33 12% < 25 
 

56% 84% Hamilton et 
al.(52) 

All seasons         
 Carolina, USA 

(35 °N) 
Young active 
military personnel 

312 - - - 52% Wentz et al.(142) 

Not reported         
 East Germany 

(53 ºN) 
Competitive 
gymnasts 

85 8 - 27 37% < 25 - - 
Bannert et al.(12) 

 Pittsburgh, 
USA (40 °N) 

National football 
league players 

80 22 - 37 - 26% 69% Maroon et al.(92) 

 Jerusalem, 
Israel (32 °N) 

Athletes and 
dancers 

98 10 - 30 - - 73% Constantini et 
al.(35) 

 Texas, USA 
(31 °N) 

Overweight and 
obese soldiers 

314 31 - 21% 72% < 72 Funderburk et 
al.(41) 

Age is presented as mean or range. Hyphen ‘-’ indicates not reported.  
1Values are based on current recommendations for bone health, where circulating 25(OH)D < 30 nmol/L is defined as deficient and < 50 nmol/L is defined as insufficient (66). 
Note: not all authors have used the IoM classification as reflected in the table.  
2Evidence suggests that those with circulating 25(OH)D < 75 nmol/L have a higher adjusted odds of acute respiratory infections compared with individuals with 25(OH)D levels 
� 75 nmol/L (97).�
�

 

Table 1. Classification of vitamin D status suggested by the Institute of Medicine . 1

Vitamin D status Circulating 25(OH)D concentration 
(nmol/L) 

Deficient < 30 
Inadequate 30 - 50 
Sufficient > 50  
1Institute of Medicine (66). 
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density, lower limb function, dental health, cancer prevention,
risk of falls, fractures, incident hypertension and mortality
concludes that for all endpoints, circulating levels of
25(OH)D < 50 nmol/L are associated with adverse effects or
no benefit, while the most advantageous circulating levels for
25(OH)D appeared to be close to 75 nmol/L (20). Further
research is clearly required to investigate whether a circulat-
ing 25(OH)D > 75 nmol/L is necessary to optimise immune
function, as will be discussed in more detail in section 5.3. For
the purposes of this review, vitamin D deficiency is denoted
as circulating 25(OH)D < 30 nmol/L in line with the current
IoM recommendations (117). 

2. IS VITAMIN D DEFICIENCY A PROBLEM
FOR ATHLETES AND MILITARY

PERSONNEL?

The answer to this question appears to be ‘yes’ although to
date we know of no evidence indicating that athletes are at
greater risk of vitamin D deficiency than non-athletes. A sum-
mary of the current evidence on vitamin D status in athletes
and military personnel is provided in Table 2. As logic dic-
tates, vitamin D deficiency is more prevalent in the winter
when skin sunlight UVB exposure and endogenous synthesis
of vitamin D is low and in those who cover their skin whilst
training outdoors in the summer (51) or who train predomi-
nantly indoors (12). In the winter months more than half of
the athletes and military personnel studied could be consid-
ered to have insufficient vitamin D status (circulating
25(OH)D < 50 nmol/L) and as many as 35% could be consid-
ered vitamin D deficient. Important considerations when
interpreting the data on the incidence of vitamin D deficiency
in athletes and military personnel (Table 2) include: sunlight
avoidance behaviour (fear of sunburn and skin cancer); sea-
son; latitude; skin type; clothing and sunscreen use, all of
which will be discussed in section 7.

3. EMERGING BIOLOGICAL ACTIONS OF
VITAMIN D

Many tissues other than kidney, including brain, lung, muscle,
skin, adipose tissue and cells of the immune system possess
both the 1-α-hydroxylase and VDR and are able to produce
the biologically active 1, 25(OH)2D from circulating
25(OH)D (11). It is important to note that extra-renal 1-α-
hydroxylase differs from renal 1-α-hydroxylase in that it is not
regulated by circulating PTH, calcium and phosphate concen-
trations (145). In recent years it has been established that vita-
min D is not only important for calcium homeostasis and bone
health but also for the optimal function of skeletal muscle and
immune function.

3.1 Vitamin D and skeletal muscle function
Vitamin D can modulate skeletal muscle function by both
genomic and nongenomic events. 1, 25(OH)2D induces mus-
cle gene transcription and protein synthesis to influence mus-
cle cell proliferation and differentiation, calcium uptake and
phosphate transport across the sarcolemma (50). The nonge-
nomic responses include modulation of calcium uptake across

the sarcolemma and the activation of mitogen-activated pro-
tein kinase signalling pathways in muscle fibres (50). Vitamin
D also up-regulates expression of insulin-like growth factor-1
(IGF-1) (5), which has a well-recognised role in muscle
remodelling, hypertrophy and strength gains (74). IGF-1,
which is mostly produced by the liver and bound by insulin-
like growth factor binding protein 3 (IGFBP-3) in the serum,
is a key component in muscle regeneration and could induce
proliferation, differentiation and hypertrophy of skeletal mus-
cle (5, 122). IGFBP-3 expression could be regulated by vita-
min D as there are vitamin D response elements in the pro-
moter region of the human IGFBP-3 gene which might lead to
higher circulating amounts of IGFBP-3 and so delay the nor-
mally rapid clearance of IGF-1 in the bloodstream (50, 83).
The obvious implication of these findings is that vitamin D
status and vitamin D supplementation might affect muscle
strength, endurance and athletic performance. This has
received considerable attention over the past decade and the
results of these studies have been the main focus of numerous
recent reviews about vitamin D and the athlete (6, 80, 99, 105,
106, 123, 130). The general consensus at present is vitamin D
deficiency could negatively impact athletic performance due
to the influence of vitamin D on muscle function. However,
there is insufficient evidence from a limited number of cross
sectional vitamin D status studies and longitudinal, ran-
domised, placebo-controlled vitamin D3 supplementation
studies in athletes to conclude that vitamin D is a direct per-
formance enhancer (46).

4. VITAMIN D AND IMMUNE FUNCTION

Vitamin D is known to have important effects on both innate
and adaptive immune function with implications for host
defence. These issues are the main focus of the remainder of
this review.

The discovery of VDR in almost all immune cells, including T
lymphocytes, B lymphocytes, neutrophils and antigen pre-
senting cells, such as monocytes, macrophages and dendritic
cells prompted the idea that vitamin D could have a vital role
in the regulation of immune responses (11). These immune
cells also express the mitochondrial vitamin D-activating
enzyme, 1-α-hydroxylase (CYP27B1) and thus possess the
ability to convert 25(OH)D to 1, 25(OH)2D. This conversion
is regulated by circulating levels of 25(OH)D and can also be
induced by activation of specific toll-like receptors (TLRs)
(18) which act as pathogen detectors. Thus, 1, 25(OH)2D
could play important roles in both innate and adaptive
immune responses (Figure 3). Four potential mechanisms by
which vitamin D can influence immune function have been
proposed: 1) direct endocrine actions on immune cells mediat-
ed by circulating 1, 25(OH)2D formed in the kidney; 2) direct
intracellular actions of 1, 25(OH)2D following intracrine con-
version of 25(OH)D to 1, 25(OH)2D within immune cells; 3)
paracrine actions of 1, 25(OH)2D produced in and secreted
from antigen presenting cells on local lymphocytes and neu-
trophils and 4) indirect effects on antigen presentation to T
cells mediated by influence of circulating 1, 25(OH)2D on
antigen presenting cells (60, 112). The proposed actions of 1,
25(OH)2D on the human immune system are summarised in
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Table 3. Although the actions of vitamin D do not alter num-
bers of circulating leukocytes, neutrophils, monocytes or lym-
phocytes, the proportions of lymphocyte subsets, particularly
within the T cell compartment, can be modified as can the
functions of various immune cells associated with both innate
and acquired immunity.

4.1 Vitamin D, innate immunity and mucosal immunity
It has been demonstrated that 1, 25(OH)2D is a vital mediator
of innate immune responses, enhancing the antimicrobial
properties of immune cells such as monocytes and
macrophages through the induction of antimicrobial proteins
(AMPs) and stimulation of autophagy and autophagosome
activity (18, 31). 1, 25(OH)2D is a key link between TLR acti-
vation and antimicrobial responses in innate immunity. Fol-
lowing activation of the TLR signalling cascade in the pres-
ence of microbes, 1, 25(OH)2D has a vital role in up-regulat-
ing the production of AMPs, such as cathelicidin and β-
defensin (85, 138). The AMPs have a broad range of activities
against microorganisms, particularly bacteria, and may also
be involved in the direct inactivation of viruses through mem-
brane destabilisation (68). They are produced by epithelial
cells and macrophages and in the lungs are secreted into the
biofilm covering the inner surface of the airways, thereby cre-
ating a barrier that is chemically lethal to microbes. Both
macrophages and epithelial cells, possessing the 1-α-hydroxy-
lase and VDR, are capable of responding to and producing 1,
25(OH)2D. The biologically active form, 1, 25(OH)2D, can
induce expression of the vitamin D responsive genes to
enhance the production of cathelicidin and β-defensin by
binding to VDREs as described previously in section 1.3. The
stimulation of TLRs by interaction with pathogen associated
molecular patterns in macrophages or by wounding the epi-
dermis in keratinocytes results in increased expression of both

the VDR and the 1-α-hydroxylase enzyme, which up-regu-
lates the production of 1, 25(OH)2D to stimulate the expres-
sion of cathelicidin and β-defensins in the presence of ade-
quate 25(OH)D as illustrated in Figure 4 (31, 85). 25(OH)D,
the major circulating form used to determine vitamin D status,
is an essential factor for the local production of 1, 25(OH)2D
to up-regulate cathelicidin production in the skin and in
macrophages. While 1, 25(OH)2D alone is sufficient for the
strong induction of cathelicidin expression, the combination
of IL-1β and 1, 25(OH)2D is required for the strong induction
of β-defensin. 1, 25(OH)2D can double the induction of β-
defensin production by IL-1β signalling which stimulates NF-
κB transcription factor function (84). 

In addition to its effects on AMPs, 1, 25(OH)2D strengthens
epithelial barrier functions by up-regulating genes for the pro-
teins required in tight junctions (e.g. occludin), gap juctions
(e.g. connexin 43) and adherens junctions (e.g. E-cadherin) in
epithelial cells, fibroblasts and keratinocytes (32, 47, 107).
Furthermore, 1, 25(OH)2D enhances the effectiveness of
monocytes and macrophages in killing microbes by enhancing
the generation of reactive oxygen species and the expression
of inducible nitric oxide synthase in these phagocytic cells
(124) as well as augmenting IL-1β secretion and up-regulating
the expression of CD14, the lipopolysaccharide (LPS) recep-
tor. 

Recent studies on natural killer (NK) cell function indicate
that 1, 25(OH)2D upregulates the expression of NK cell sur-
face cytotoxicity receptors NKp30, NKp44 and NKG2D,
downregulates the expression of the killer inhibitory receptor
CD158 and enhances NK cell cytolytic activity (3). Vitamin D
appears to have rather limited effects on neutrophil function.
Although neutrophils are recognised as an important source of

 

Table 3. The proposed effects of 1, 25 dihydroxy vitamin D on the immune system. 
Target site Actions of 1, 25 (OH)2D 
Antigen presenting cells Upregulation of the production of antimicrobial proteins and peptides (AMPs) (e.g. cathelicidin, β-defensins) 
 Increased generation of reactive oxygen species and the expression of inducible nitric oxide synthase 
 Increased macrophage phagocytosis 
 Upregulation of CD14 expression 
 Downregulation of CD40 (required for B cell activation) 
 Downregulation of CD80/86 (required for T cell activation) 
 Downregulation of MHCII expression 
 Elevation of IL-10 production 

 Inhibition of production of pro-inflammatory cytokines 
Saliva Increased saliva flow and AMP secretion  
Epithelial cells Upregulation of genes for gap junction, adherens junction and tight junction proteins to strengthen barrier function 
Natural Killer cells Downregulation of production of IFN-γ 
 Upregulation of expression of NK cytotoxicity receptors NKp30 and NKp44 

 Augmentation of IL-2 activated cytolysis 
T cells Increased vitamin D receptor expression 
 Suppression of T helper (Th) type 1 and induction of Th2 
 Inhibition of production of pro-inflammatory cytokines IL-2 and IFN-γ by Th1 cells 
 Elevation of IL-4 production by Th2 cells 
 Suppression the development of Th17 cells and inhibition of the production of cytokines by Th17 cells 
 Induction of Treg cells 
 Increased IL-10 production by Treg cells 

 Upregulation of phospholipase C-gamma 1 expression leading to increased antigen-specific T cell activation and 
proliferation 

B cells  Increased vitamin D receptor expression 
 Suppression of B cell proliferation and immunoglobulin production 

 Inhibition of the differentiation of B cell precursors into plasma cells 
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cathelicidin and do express VDRs, they seem to have no 1-α
hydroxylase activity that would enable them to convert
25(OH)D into the biologically active 1, 25(OH)2D necessary
to initiate cathelicidin gene expression (59). However, neu-
trophils can be influenced directly by circulating 1, 25(OH)2D
and, as in monocytes, expression of CD14 on the cell surface
is augmented by 1, 25(OH)2D (129). Previous exposure of
neutrophils to pro-inflammatory cytokines such as tumour
necrosis factor-α (TNF-α) or granulocyte macrophage colony-
stimulating factor or with the VDBP leads to alterations in
complement activation peptide C5a-mediated neutrophil func-
tions, including enhanced chemotaxis (19). A recent study on
VDBP knockout mice reported that neutrophil recruitment to
the lung in both C5a- and CXCL1-induced alveolitis was 50%
lower than in the wild type controls (131) and that the reduced
neutrophil response in VDBP knockout mice could be
restored to wild-type levels by administering exogenous
VDBP suggesting that VDBP may have a more significant
role in neutrophil recruitment than previously recognised.
These various effects of vitamin D can be suggested as
improving innate immunity and could conceivably contribute
to a reduced susceptibility to infections.

4.1.1 Vitamin D, innate immunity and mucosal immunity
in athletes
A recent study in university athletes reported a higher level of
plasma cathelicidin and salivary secretory immunoglobulin A
(SIgA) secretion in those who had plasma 25(OH)D greater
than 120 nmol/L compared with those who had lower vitamin
D status (56) and a follow-up randomised, placebo controlled,
double blind vitamin D3 supplementation study (5, 000 IU/day

for 14 weeks) by the same group (55) reported significant
increases in salivary secretion rates of both SIgA and catheli-
cidin compared with no significant changes in the placebo
group. This was due, at least in part to a significant increase in
saliva flow rates over time in the vitamin D3 group. Several
animal studies have demonstrated that VDRs are present in
the parotid, submandibular and sublingual salivary glands
which points to a possible role for vitamin D in the regulation
of salivary secretion. This is supported by the finding that
salivary flow rates were stimulated after treatment with vita-
min D3 in vitamin D deficient rats (108, 128). The mechanism
for how vitamin D affects salivary flow rates requires elucida-
tion. But it was suggested that vitamin D might stimulate sali-
vary secretion through the regulation of calcium as the rapid
efflux of calcium plays a role in the stimulation of fluid secre-
tion (108).

In summary, the discovery of increased VDR and 1α-hydrox-
ylase (CYP27B1) expression in macrophages following a
pathogen challenge, and the subsequent enhancement of AMP
production, oxidative burst and autophagosome activity has
underlined the importance of intracrine vitamin D as a key
enhancer of innate immune function. It is now clear that both
macrophages and dendritic cells are able to respond to
25(OH)D, the major circulating vitamin D metabolite, thereby
providing a link between the function of these cells and the
variations in vitamin D status among humans. Although the
evidence is limited, recent studies in athletes show beneficial
effects of high circulating vitamin D (> 120 nmol/L) on innate
immunity and mucosal immunity. 

Figure 4. Cathelicidin induction via activation of TLRs and vitamin D. 25-hydroxy vitamin D (25(OH)D) is transported in the circulation bound to
the vitamin D binding protein (VDBP). Pathogen associated molecular patterns (PAMPs) on invading microorganisms trigger toll-like receptors
(TLR 1/2 and TLR4) and subsequent downstream signalling (dashed arrow) induces the mitochondrial 1-α hydroxylase (CYP27B1), increasing
the intracellular conversion of 25(OH)D to 1, 25(OH)2D which after binding to the vitamin D receptor (VDR) along with the retinoid X receptor
(RXR) in the cytoplasm translocates to the nucleus where it binds to cognate vitamin D response elements (VDRE) located in the regulatory
regions of 1, 25(OH)2D target genes and then induces transcription of the vitamin D responsive genes leading to increased amounts of antimi-
crobial proteins (e.g. cathelicidin, β-defensin) being produced.
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4.2 Vitamin D, adaptive immunity and inflammation
In contrast with the innate immune responses, many of the
reported actions of vitamin D on adaptive immunity are
indicative of anti-inflammatory and suppressive mechanisms,
which could be beneficial for those with autoimmune disor-
ders. The effect of 1, 25(OH)2D on antigen presenting cells is
to induce IL-10 and suppress IL-12 production, inhibit den-
dritic cell activation by down-regulating expression of costim-
ulatory molecules CD40 and CD80/86 while up-regulating the
production of AMPs and autophagosome activity (1). Further-
more, 1, 25(OH)2D can inhibit T cell proliferation and also
influence the phenotype of T cells, in particular through the
suppression of Th1 cells which are associated with cellular
immunity (81). Studies using human T cell cultures have
shown that 1, 25(OH)2D inhibits T cell proliferation and pro-
duction of IL-2 and interferon gamma (IFN-γ) (102, 116,
132). In contrast, 1, 25(OH)2D enhances cytokine production
by Th2 cells (e.g. IL-4) that are associated with humoral
immunity (21). Thus, vitamin D could help limit the inflam-
mation and tissue damage associated with excessive Th1 cel-
lular immunity by shifting the balance to a Th2 cell pheno-
type. 1, 25(OH)2D also has an influence on the activity of
Th17 cells, which are linked to inflammatory tissue damage.
It appears that 1, 25(OH)2D can suppress the development of
Th17 cells and inhibit the production of cytokines by Th17
cells (27). In addition, it has been shown that treatment of
naive CD4 T cells with 1, 25(OH)2D potently induces the
development of regulatory T cells (Treg) which are capable of
producing cytokines that block Th1 development (49). Vita-
min D also increases synthesis of the primary anti-inflamma-
tory cytokine IL-10 by Treg cells and dendritic cells (45, 120).
Overall, vitamin D is suggested to maintain a balance between
inflammatory Th1/Th17 cells and immunosuppressive
Th2/Treg cells to temper inflammation and tissue damage
(59). It has also been demonstrated that 1, 25(OH)2D can sup-
press B cell proliferation and immunoglobulin production and
inhibit the differentiation of B cell precursors into plasma
cells, which highlights a potential role for vitamin D in B cell
related disorders (30). 

The actions of vitamin D on adaptive immunity appear to be
mostly suppressive or inhibitory, so why does this not impair
immune responses to pathogens and increase susceptibility to
infection? The answer to this paradox may be found in the
recent studies indicating that vitamin D is essential in activat-
ing and controlling the T-cell antigen receptor and thus
enhancing the recognition of antigens by T lymphocytes (73,
134) leading to an activation of the cellular immune response
in response to pathogen exposure. Naive human T cells have
very low expression of phospholipase C-gamma 1 (PLC-γ1),
a key signalling protein downstream of many extracellular
stimuli, and this is associated with low T cell antigen receptor
(TCR) responsiveness in naive T cells. However, TCR trigger-
ing leads to a large up-regulation of PLC-γ1 expression,
which correlates with greater TCR responsiveness. Induction
of PLC-γ1 is dependent on vitamin D and expression of the
VDR. Naive T cells do not express the VDR, but VDR expres-
sion is induced by TCR signalling via the alternative mitogen-
activated protein kinase p38 pathway. Thus, initial TCR sig-
nalling via p38 leads to successive induction of VDR and
PLC-γ1, which are required for subsequent classical TCR sig-

nalling and T cell activation. These findings indicate that vita-
min D is crucial for the activation of the acquired immune
system and therefore very important for the effective clear-
ance of viral infections. The aforementioned suppressive
actions of vitamin D on adaptive immunity may therefore be a
reaction to prevent the development of an exaggerated
immune response and excessive inflammation following T
cell activation. This is, of course, important as the ideal
immune response is rapid, proportionate, and effective but
finite; an inflammatory response which is disproportionate or
lasts too long risks injury to the host. The recognition that in
adaptive immunity vitamin D is needed for its effective acti-
vation when challenged by pathogens is more in keeping with
its role in promoting innate immunity and the reduction in res-
piratory infection incidence with improved vitamin D status
which has been reported in several large scale studies in both
the general population (44) and athletes (56) which are dis-
cussed in more detail in section 5 of this review.

It is also important to recognise that the primary influence of
1, 25(OH)2D may vary with the tissue site. Systemic levels of
1, 25(OH)2D may aid in maintaining tonic immunosuppres-
sion and thus prevent trivial antigenic stimuli from initiating
an immune response. Upon initiation of an immune response
to a significant antigenic challenge 1, 25(OH)2D may, in con-
cert with other suppressor mechanisms, limit the extent of the
host response by inhibition of IL-2 and IFN-γ production. At
local sites of chronic inflammation concentrations of 1,
25(OH)2D may be elevated and may act in an autocrine or
paracrine fashion to alter the immune response, for example,
by increasing IL-1β production and antigen presentation by
tissue macrophages. The activation of T cells is associated
with increased expression of VDRs, thus potentially limiting
T cell proliferation in the presence of the 1, 25(OH)2D. Thus,
the end result of the opposing effects of 1, 25(OH)2D on
immune cells and their secretory products may vary with the
specific cells involved, their state of maturation and activa-
tion, and the local concentrations of 1, 25(OH)2D.

The identification of hundreds of primary 1, 25(OH)2D target
genes in immune cells has provided new insight into the role
of vitamin D in the adaptive immune system, such as the mod-
ulation of antigen-presentation and T cell proliferation and
phenotype, with the over-arching effects being to suppress
inflammation and promote immune tolerance, while also
being able to activate the acquired immune response in the
presence of pathogen challenge. Thus variations in 25(OH)D
levels have the potential to influence both innate and adaptive
immune responses.

4.3 Vitamin D and cytokine responses
The studies that have reported modulation of pro- and anti-
inflammatory cytokine production by vitamin D have general-
ly administered 1, 25(OH)2D in vivo in animals (25, 147) or in
vitro in human peripheral blood mononuclear cell cultures
(70, 101, 115, 116) and observed increases in anti-inflamma-
tory cytokines such as transforming growth factor-β, IL-4 and
IL-10 and reductions in pro-inflammatory cytokines including
IL-2, IL-6, IFN-γ and TNF-α. However, these studies have
used supraphysiological (nanomolar) concentrations of 1,
25(OH)2D3 to determine mitogen- or bacteria-stimulated
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cytokine production in human peripheral blood mononuclear
cell cultures (the normal human plasma 1, 25(OH)2D3 concen-
tration is 50-250 pmol/L). Furthermore, this experimental
approach is not a true reflection of differences in vitamin D
status, where marked differences in circulating 25(OH)D con-
centration may exist and might have more influence on
immune cell functions than changes in levels of circulating 1,
25(OH)2D. Using in vitro antigen-stimulated human whole
blood culture, inhibition of IL-2, IL-6, IFN-γ and TNF-α pro-
duction was only observed at 1, 25(OH)2D3 concentrations of
1, 000 or 10, 000 pmol/L and not within the more realistic
range of 0 to 200  pmol/L (54). This suggests that antigen-
stimulated cytokine production is unchanged within the nor-
mal reference range of 1, 25(OH)2D3 concentrations.

4.3.1 Vitamin D and cytokine responses in athletes
A recent study in athletes indicated that athletes deficient in
25(OH)D (circulating 25(OH)D < 30 nmol/L) had substantial-
ly lower in vitro antigen-stimulated production of the pro-
inflammatory cytokines (IL-6, IFN-γ and TNF-α) by whole
blood culture than athletes with high vitamin D status (circu-
lating 25(OH)D > 90 nmol/L) (56). This is similar to a report
of decreased macrophage IL-6, IL-1β and TNF-α production
following in vitro LPS stimulation of peritoneal macrophages
in vitamin D deficient mice (69). In that study the authors also
reported that TNF-α and IL-6 concentrations in serum were
~50% lower following in vivo administration of LPS in vita-
min-D deficient mice indicating that vitamin D deficiency
does result in a defect of cytokine production. A higher pro-
inflammatory cytokine production in response to an antigen
challenge with better vitamin D status could be seen as being
beneficial to host defence against pathogenic microorganisms.
Indeed, athletes with high vitamin D status had fewer upper
respiratory illness (URI) episodes during a 4-month winter
period than those with vitamin D deficiency (56). 

Further studies are warranted to understand the mechanisms
by which vitamin D affects adaptive immunity and the impli-
cations for both infectious and autoimmune diseases. In par-
ticular, studies in athletes and military personnel are required
to examine the influence of seasonal changes in vitamin D sta-
tus and vitamin D supplementation (see section 6) on in vivo
immune measures with known clinical endpoints such as the
antibody response to vaccination (136).

It is also worth noting that some cytokines have an influence
on vitamin D metabolism, For example IFN-γ is a Th1 pro-
inflammatory cytokine that influences vitamin D metabolism
in human monocytes (37, 126) and macrophages (72) by
increasing 1α-hydroxylase activity which mediates the con-
version of 25(OH)D to 1, 25(OH)2D. In contrast to IFN-γ, IL-
4 is a Th2 anti-inflammatory cytokine that initiates the catabo-
lism of 25(OH)D to the biologically inactive 24, 25(OH)2D
(37). Furthermore, recent genome-wide analyses (31) have
highlighted how cytokine signalling pathways can influence
the intracrine vitamin D system and either enhance or abro-
gate responses to 25(OH)D.

4.4 Vitamin D, wound repair and rehabilitation from injury
The emerging evidence for an influence of vitamin D status
during musculoskeletal rehabilitation following injury or sur-

gery is of potential importance to athletes. One study reported
that vitamin D status influenced strength and recovery in
young, recreationally active individuals following anterior
cruciate ligament repair (14). In this study, those with circulat-
ing 25(OH)D concentration below 75 nmol/L recovered more
slowly and had significantly attenuated increases in peak iso-
metric force compared to those with concentrations above 75
nmol/L. Another study by the same group reported that fol-
lowing an intense single limb exercise bout a faster recovery
of muscle strength occurred with higher pre-exercise levels of
circulating 25(OH)D (13). Studies in athlete populations are
currently lacking but a few studies of patients in rehabilitation
units support the idea that vitamin D may be important for
rehabilitation (13, 71, 121). A study in a general rehabilitation
unit found that vitamin D deficiency delayed rehabilitation
and increased length of stay by 19% (71). Another ran-
domised trial in female stroke patients found that supplemen-
tation with 1, 000 IU vitamin D/day improved muscle strength
and increased the relative number and size of type II muscle
fibres (121). 

5. VITAMIN D STATUS AND RESPIRATORY
INFECTION

5.1 Vitamin D status and respiratory infection in the gene-
ral population 
Several cross-sectional and cohort studies have reported a
negative association between vitamin D status and respiratory
infection incidence. In the National Health, Nutrition and
Examination Survey involving 18, 883 participants above 12
years, those with circulating 25(OH)D < 25 nmol/L were 1.4
times more likely to report recent URI compared to those with
25(OH)D ≥ 75 nmol/L, even after adjusting for demographics
and clinical data (season, body mass index, smoking history,
asthma and chronic obstructive pulmonary disease) (44). The
proportion of participants who had a self-reported URI was
also significantly different between vitamin D groups (24% in
those with circulating 25(OH)D levels < 25 nmol/L vs. 20%
with levels of 25-75 nmol/L vs. 17% with levels of ≥ 75
nmol/L) (44). In a cohort study over 3.5 months in 198
healthy adults, there was a significant inverse association
between circulating 25(OH)D concentration and risk of acute
viral respiratory tract infection (45% in those with 25(OH)D <
95 nmol/L vs. 17% in those with circulating 25(OH)D ≥ 95
nmol/L). Circulating 25(OH)D > 95 nmol/L was also associat-
ed with a significant two-fold reduction in the risk of develop-
ing acute respiratory tract infections (119). The main strength
of the study was that infection was confirmed by determina-
tion of pathogens in swabs collected from participants who
exhibited symptoms of respiratory tract infection. Further-
more, in a nationwide study involving 6, 789 middle-aged
British adults, 12% of those with circulating 25(OH)D < 25
nmol/L had a respiratory infection in the month prior to blood
sampling compared to 6% in those with 25(OH)D > 100
nmol/L. Circulating 25(OH)D was inversely associated with
risk of acute respiratory infection even after taking into
account lifestyle and socio-economic factors. Each 10 nmol/L
increase in circulating 25(OH)D significantly reduced the risk
of self-reported acute respiratory infection by 7% (16).
Hence, these population-wide studies indicate an inverse rela-
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tionship between circulating 25(OH)D and the incidence of
URI.

5.2 Vitamin D status and respiratory infection in military
personnel and athletes 
In 756 young Finnish conscripts who were starting military
training during the summer time (July), 4% had low circulat-
ing 25(OH)D concentrations (stated by the authors as < 40
nmol/L). Although only a minority showed such low levels of
circulating 25(OH)D, this group had significantly more duty
days lost due to respiratory infection during the following 6
months of training to January (median: 4 vs. 2 days) than
those with circulating 25(OH)D > 40 nmol/L. Those with low
25(OH)D were also 1.6 times more likely to miss duty due to
respiratory infection (76). However, the study only measured
circulating 25(OH)D at the start of military training and thus
failed to account for any changes in 25(OH)D during the
training period that might have influenced respiratory infec-
tion incidence. 

Studies in athletic populations have yielded similar findings.
Vitamin D status was assessed in a group of elite athletes who
reported to a physician with URI symptoms. Athletes who had
positive virology/bacteriology results (infectious group; mean
± SD circulating 25(OH)D 79 ± 164 nmol/L) or had mild to
moderate leukocytosis (suggestive group; circulating
25(OH)D 77 ± 95 nmol/L) had significantly lower circulating
25(OH)D levels than those who had negative virology/bacte-
riology results and normal differential leukocyte counts
(unknown group; 168 ± 251 nmol/L) (36). Irrespective of the
high SDs reported, which suggest large between-participant
variability in circulating vitamin D levels, the vitamin D level
in the infectious and suggestive groups appear relatively high
(means > 75 nmol/L): it’s unclear if this finding can be
explained by the assay used to determine circulating 25(OH)D
as the assay method is not mentioned. In another group of
endurance athletes, a significantly greater proportion of those
with circulating 25(OH)D < 30 nmol/L presented with URI
symptoms than those with 25(OH)D > 120 nmol/L (56). Fur-
thermore, the total number of URI symptom days and the
median symptom-severity score in athletes with circulating
25(OH)D < 30 nmol/L was significantly higher than those
with 25(OH)D > 120 nmol/L (56). 

In summary, though causality cannot be established from
cross-sectional comparisons, studies in military personnel and
athletes agree with the large general population studies (that
used powerful logistical regression techniques to identify con-
tributing factors to URI) by showing an inverse relationship
between circulating 25(OH)D and the incidence of URI.

5.3 Is there an optimal vitamin D status to prevent respira-
tory infections?
As mentioned previously, circulating 25(OH)D is recom-
mended to be > 50 nmol/L for optimum bone health as this
represents the level that reduces circulating PTH to a mini-
mum and allows maximum calcium absorption (66). Nonethe-
less, Chapuy et al. (28) reported an inverse relationship
between circulating levels of 25(OH)D and PTH up to 75
nmol/L, at which point the decrease in PTH in response to
increasing 25(OH)D levelled out. As such, many experts now

agree that a circulating 25(OH)D concentration of at least 75
nmol/L is desirable (4, 20, 64, 109). In accordance with this
recommendation, one large scale study involving 14, 108 par-
ticipants over 16 years of age (NHANES, 2001–2006) sup-
ports the proposed circulating 25(OH)D cut-off level of 75
nmol/L for the prevention of respiratory infection as there was
a near linear inverse relationship between circulating
25(OH)D levels and the cumulative frequency of acute respi-
ratory infection up to 25(OH)D levels ~75 nmol/L (97). Inter-
estingly, in another study, a partition analysis determined that
a circulating 25(OH)D cut-off level of 95 nmol/L best dis-
criminated between groups that did or did not develop viral
infections and it has been reported that adults with 25(OH)D
status < 95 nmol/L had a significant two-fold increase in the
risk of developing acute respiratory infection during winter
months compared with those whose 25(OH)D status was > 95
nmol/L (119). Therefore, the optimal circulating 25(OH)D
level required to prevent URI in athletes and military person-
nel has yet to be determined, but based on the limited evi-
dence available, is likely to be  75 nmol/L or possibly higher
(e.g. 95 nmol/L). Continued research using randomised-con-
trolled trials of vitamin D supplementation (see the next sec-
tion) is required to substantiate the purported 75 nmol/L cut-
off for circulating 25(OH)D to prevent URI in athletes and
military personnel.

6. THE EFFECTS OF ORAL VITAMIN D
SUPPLEMENTATION AND UVB IRRADIA-
TION ON VITAMIN D STATUS, IMMUNITY

AND RESPIRATORY INFECTION

As described in section 5, a consistent observation in the
extant literature is that vitamin D insufficiency is associated
with increased URI incidence and symptom duration. There-
fore, adopting strategies to avoid vitamin D insufficiency e.g.
taking a daily oral vitamin D supplement during the winter
and, where possible, practising safe summer sunlight expo-
sure is important to optimise vitamin D status and defence
against URI. The information covered in this section consid-
ered alongside the sections that follow on factors affecting
vitamin D status (section 7) and toxicity (section 8) will form
the backdrop for the closing section on simple recommenda-
tions to optimise vitamin D status and immune health for ath-
letes and military personnel (section 10).

6.1 The effects of oral vitamin D supplementation on vit-
amin D status, immunity and respiratory infection
Although vitamin D2 and D3 are available as oral supple-
ments, vitamin D3 supplementation is more commonly used
as it has a greater efficacy in raising circulating 25(OH)D
compared to vitamin D2 (65). Current evidence (Table 4)
indicates that oral vitamin D supplementation enhances
innate responses to mycobacterial infection (specifically,
Mycobacterium bovis in the BCG-lux assay) (93) and
increases circulating levels of the AMP cathelicidin (17, 55).
A shift towards an anti-inflammatory cytokine profile (91,
125) and an increase in circulating regulatory T cells (111)
has also been demonstrated with oral vitamin D supplemen-
tation. Nevertheless, there are weaknesses with some of
these studies that limit the interpretation in terms of the
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influence of vitamin D supplementation on immunity;
including, the lack of experimental control (111, 125) and
co-supplementation with calcium (91). In addition, a few of
these studies were conducted using Multiple Sclerosis
patients (91, 125), an autoimmune disease characterised by

an inflammatory profile, and there is a large discrepancy
amongst studies with regards the oral vitamin D dosing regi-
mens (Table 4). As such, more randomised-controlled trials
are needed in young, healthy athletic populations to confirm
these findings.

 

Table 4. Summary of evidence regarding the effects of oral vitamin D supplementation on immune function. 

1Mean, median or range is provided for age as reported.  
2Mean values are reported unless stated otherwise.  
Hyphen ‘-’ indicates not reported. RCT = Randomised controlled trial. DB = Double-blinded. UT = Uncontrolled trial. BCG = Bacille Calmette Guérin, a vaccine against 
tuberculosis, prepared from a strain of Mycobacterium bovis. IFN-� = Interferon gamma. MS = Multiple sclerosis. 

Study 
design 
 

Population1 Season or 
month Supplementation 

Change in circulating 
25(OH)D concentration2  

(pre to post, nmol/L) 
Immune outcome Ref 

UT 25 healthy 
adults,  
39 years 

- 50, 000 IU Vit D2 
every other day for 
5 days 

Vit D group: � 62 from pre    
< 80  

 
Group with largest increase in plasma 25(OH)D (80 - 160 
nmol/L) showed increase in plasma cathelicidin  

Bhan et 
al.(17) 

RCT 
DB 

39 athletes,  
20 years 

Winter 5, 000 IU Vit D3 or 
placebo daily for 14 
weeks 

Vit D group: � 55 to 126 
Placebo group: � 57 to 33 

 
Vit D group: Plasma cathelicidin � 15% 
Placebo group: Plasma cathelicidin � 9% 

Heet 
al.(55) 

RCT 
DB  

131 healthy 
adults,  
25 - 45 years 

Winter and 
Spring 

Single dose of     
100, 000 IU Vit D2 
or placebo at 
baseline 

Vit D group: � 35 to 67 
Placebo group: - 

 
Vit D group: Ability of whole blood to restrict BCG-lux 
luminescence � 20% compared to placebo 
 
No difference in whole blood antigen-stimulated IFN-� 
secretion 
 

Martineau 
et al.(93) 

RCT 
DB 

39 MS patients - 1, 000 IU Vit D3 and 
800 mg calcium or 
placebo daily for 6 
months 

Vit D group: � 42 to 70  
Placebo group: - 
 

 
Vit D group: TGF-ß1 levels � 28% 
Placebo group: No effect 
 

Mahon et 
al.(91) 

UT 46 healthy 
adults,  
31 years 

Feb to Jun 140, 000 IU of Vit 
D3 at baseline and 
week 4  

Vit D group: � 60 to 145  
 
Vit D group: % Tregs� 17%  Prietlet 

al.(111) 

UT 15 MS patients  Oct to Dec 20, 000 IU Vit D3 
daily for 3 months  

Vit D group: � 50 to 380 
(median) 

 
Vit D group: Proportion of IL-10+ CD4+ T cells � 92% 
Ratio between IFN-�+ and IL-4+ CD4+ T cells � 19% 

 
Smolders 
et al.(125) 

 

Table 5. Summary of evidence regarding the effects of oral vitamin D supplementation on self-reported URI. 

Study 
design 
 

Population1 Season or 
month Supplementation 

Change in circulating 
25(OH)D2 
(pre to post, nmol/L)   

URI outcome Sig. 
 

Ref 

RCT 
DB 

162 healthy 
adults, 
18 - 80 years 

Winter 2, 000 IU Vit D3 or 
placebo daily for 3 
months 

Vit D group: � 64 to 89  
Placebo group: � 63 to 61 
 
 

Episodes per group
Vit D group: 48        Placebo group: 50 
 
Symptom duration (days)  
Vit D group: 5          Placebo group: 5 

 
NS 
 
 
NS 

Li-Ng et 
al.(82) 

RCT 
DB 

164 young 
Finnish 
conscripts, 
18 - 28 years 

Autumn and 
Winter 

400 IU Vit D3 or 
placebo daily for 6 
months 

Vit D group: � 79 to 72 
Placebo group: � 74 to 51 
 
 

Symptom incidence (%, Vit D vs. Placebo) 
Cough           65  vs. 57                      
Runny nose       74  vs. 75                
Sore throat        48  vs. 45                  
Fever            31  vs. 38                        
 
Absent from duty due to URI (days) 
Vit D group: 2           Placebo group: 3  

 
 
NS 
NS 
NS 
NS 
 
 
NS 

Laaksi et 
al.(75) 

RCT 
DB 

322 healthy 
adults in New 
Zealand, 
47 years 

Feb to Nov Initial dose of 200, 000 
IU Vit D3, 200, 000 IU 
a month later, 
subsequently 100, 000 
IU monthly or placebo 
for 18 months 

Vit D group: � 72 to > 120  
Placebo group: � 70 to < 50  
 
 

Episodes per person  
Vit D group: 4           Placebo group: 4   
 
Missed work due to URI (days) 
Vit D group: 1           Placebo group: 1  
 
Symptom duration (days) 
Vit D group: 12         Placebo group: 12 

 
 
NS 
 
 
NS 
 
 
NS 

Murdoch 
et 

al.(103) 

1Average age or age range provided where reported.  
2Mean values are reported unless stated otherwise.  
RCT = Randomised controlled trial. DB = Double-blinded. NS = Non-significant. 
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Currently, there is little evidence to support vitamin D supple-
mentation to reduce URI incidence and duration (Table 5).
Three randomised-controlled trials showed no difference
between oral vitamin D supplementation and placebo for URI
incidence and duration (75, 82, 103). This is despite the fact
that vitamin D supplementation increased circulating
25(OH)D compared to the placebo. The lack of an observed
effect of oral vitamin D supplementation on URI in these
studies may be due to participants having relatively high base-

line vitamin D levels at the outset (baseline circulating
25(OH)D levels range from 64 to 79 nmol/L). Indeed, it has
been suggested that boosting the 25(OH)D level in those with
vitamin D deficiency (circulating 25(OH)D level < 30
nmol/L) activates various innate and adaptive immune
responses that are critical in the control of some respiratory
viral infections; however, boosting from a higher starting
level of 25(OH)D probably provides no additional benefit
(22). Randomised-control trials of oral vitamin D supplemen-
tation are sorely needed in athletes and military personnel
around the winter-time nadir in circulating 25(OH)D level
when evidence indicates vitamin D deficiency in up to 35% of
individuals (Table 2). Moreover, for convenience, rather than
confirming the presence of pathogens in oral/nasopharyngeal
swabs, studies have tended to rely on self-report of URI using
common-cold symptom questionnaires that have been criti-
cised (36). Notwithstanding this limitation, symptoms of URI
without a detectable pathogen appear to be common in those
under heavy training stress (36) and likely have a negative
impact upon training and performance (113).

6.2 The effects of UVB irradiation on vitamin D status and
immunity 
As introduced in section 1.1, for a range of skin colours and
latitudes between 30 and 60 °N, the majority of vitamin D can
be obtained through short-lasting skin exposures to natural
UVB irradiation from summer sunlight (~15 min each day).
Importantly, prolonged exposures give diminishing returns in
terms of vitamin D formation (61) and raise the risk of erythe-

ma (i.e. sunburn) for fairer skin types (140) and skin cancer
(10). For example, a single minimum erythemal dose (MED:
the minimum amount of sunlight that burns the skin) typically
provides an oral equivalent vitamin D dose of 10, 000 to 25,
000 IU (140). As such, experts recommend short, frequent
exposures to a standard erythemal dose (SED: equates to ~ ¼
to ½ MED for the white UK population) in shorts and t-shirt
that does not burn the skin and provides the oral equivalent
vitamin D dose of ~1, 000 IU (Figure 5). To ensure safety and

efficacy, exposing a large surface area over a shorter duration
as opposed to a small surface area for prolonged periods is
recommended to increase circulating levels of vitamin D. For
example, full body exposure for 2 min is preferable to over-
exposing a (bald) head and neck for 20 min (139). 

It remains unknown if UVB exposure of the skin (either from
sunlight or a sun cabinet) has additional benefits on immune
function, health and performance independent of the synthesis
of vitamin D. For example, UV radiation generates nitric
oxide locally at the skin which has been associated with bene-
fits to cardiovascular health via a decrease in systemic blood
pressure (67). In addition to its effects on vasodilatation, nitric
oxide may also influence neurotransmission, immune
defence, regulation of cell death (apoptosis) and cell motility
(67). The potential for mood enhancement (possibly mediated
via increased β-endorphins) and stress reduction with skin
sunlight or artificial UVB exposure to influence immune
function, health and performance should not be overlooked.
Indeed, it’s possible, but remains unknown, that UVB expo-
sure of the skin improves immune function and exercise per-
formance to a greater extent than the equivalent oral vitamin
D supplementation due to enhanced levels of nitric oxide,
mood or some as yet unknown mechanism.

A method to replicate safe summer sunlight exposure using
sub-erythemal solar simulated radiation in a laboratory-based
irradiation cabinet has been developed by Rhodes and col-
leagues (Figure 5A) (114). During the winter months, when

������������������������������������������������������������������������������������

Figure 5. (A) Impact of simulated summer sunlight exposures on circulating 25(OH)D, adapted from Rhodes et al. (114). White adult Caucasians
from Greater Manchester, UK (53.5 °N) received simulated summer sunlight exposures, specifically 1.3 standard erythemal dose (SED), three
times weekly for 6 weeks, while wearing T-shirt and shorts. (B) Influence of daily 1, 000 IU oral vitamin D3 supplementation (close circle) or
placebo (open circle) for 6 months from early autumn to late winter in adults living in New Zealand (46 °S), adapted from Logan et al. (86). Dot-
ted horizontal lines indicate Institute of Medicine thresholds for deficiency (30 nmol/L) and sufficiency (50 nmol/L) and the proposed optimal
threshold (75 nmol/L) for circulating 25(OH)D to prevent URI (97). 1To avoid the confounding influence of skin exposure to ambient UVB the
study commenced in wintertime (53.5 °N) when sunlight is negligible and circulating 25(OH)D is at its nadir.
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vitamin D status was low, this method restored adequate cir-
culating levels of vitamin D (25(OH)D level > 50 nmol/L) in
the majority of volunteers. Importantly, in line with policy
recommendations in the UK, this method simulates summer
sunlight exposure (at latitudes between 30 and 60 °N for most
skin types), on several occasions each week, for ~15 min
wearing t-shirt and shorts without producing sunburn (140).
Whether this method to restore adequate circulating vitamin D
in the winter improves immunity and host defence remains
largely unknown and requires investigation. Promising work
shows a threefold increase in circulating Tregs
(CD4+CD25hiFoxP3+) that correlated positively with the
change in circulating 25(OH)D in patients with immune-
mediated skin disease (e.g. psoriasis) after 4 weeks of pho-
totherapy treatment (96). 

7. FACTORS AFFECTING VITAMIN D
STATUS IN ATHLETES AND MILITARY

PERSONNEL

Vitamin D can be increased through natural food sources or
the exposure of skin to UVB radiation. The vitamin D produc-
tion in the skin from sufficient UVB exposure provides 80-
100% of body requirements (78). In particular, several factors
can affect the production of vitamin D via UVB exposure,
these include season and latitude as well as age, skin colour,
clothing and sunscreen use. 

7.1 Season and latitude
The solar zenith angle (SZA) is the angle between the local
vertical and the position of the sun in the sky. During the sum-
mer and at low latitudes the SZA is small. Conversely, the
SZA is large during the winter and at high latitudes. At a large
SZA, UVB radiation (290 – 320 nm) travels a longer path
through the atmosphere and there is greater attenuation of the
radiation compared to a small SZA (139). Consequently, the
amount of UVB radiation reaching the Earth’s surface is
reduced and scattered over a larger area (139). This explains
why vitamin D deficiency is more prevalent in countries at
high latitudes and particularly during the winter months (43).
Furthermore, it has been estimated that the contribution of
sunlight to vitamin D status is only 20% during the winter
(88) and 80% (89) during the spring and summer thus sug-
gesting the importance of the increase in the contribution of
diet during winter in order to prevent vitamin D deficiency.

7.2 Age
As one ages, cutaneous vitamin D production declines. This is
due to the decrease in the amount of 7-dehydrocholesterol
available in the epidermal layer of the skin, where the majori-
ty of vitamin D is formed following exposure to UVB radia-
tion (90). Despite the decline in vitamin D3 production with
age, the elderly can still achieve adequate amounts of vitamin
D in the summer through regular skin exposure to sunlight
(141) (section 6.2). Nonetheless, older athletes living in the
northern latitude may wear more clothing and train mostly
indoors. As regular skin sunlight exposure is limited, this
group of elderly people is at a greater risk of vitamin D defi-
ciency. Therefore, a combination of regular sun exposure
where possible and increased vitamin D intake from the daily

diet and oral supplementation are important considerations to
ensure that older athletes have adequate vitamin D. 

7.3 Skin colour
The amount of melanin pigment in the skin can interfere with
vitamin D synthesis by absorbing UVB radiation and blocking
the wavelength of sunlight required to synthesise vitamin D
(89), thus preventing the cutaneous production of pre-vitamin
D3. Melanin content is higher in dark-skinned individuals
compared to fair-skinned individuals. Hence, for a given dose
of UVB, a dark-skinned individual will produce less pre-vita-
min D3 than a fair-skinned individual (30). An analysis of the
vitamin D status in 63 elite UK track and field athletes report-
ed 7% of dark-skinned athletes with 25(OH)D < 50 nmol/L
compared to only 1% of fair-skinned athletes during the sum-
mer (110). When individuals were given UVB doses adjusted
for their skin colour, it was discovered that there was a ten-
dency for dark-skinned individuals to show a smaller increase
in 25(OH)D (9). Nonetheless, it should be noted that, dark-
skinned individuals can produce equivalent amounts of vita-
min D3 as their fair-skinned counterparts when exposed to
adequate amounts of UVB radiation (30).

7.4 Clothing
Clothing can act as a physical barrier preventing UVB radia-
tion from reaching the skin. As the majority of vitamin D is
synthesised in the skin, any area covered by clothing will
reduce the exposed skin surface area to sunlight. Broadly
speaking, in terms of vitamin D synthesis, there is an inverse
relationship between the surface area of the skin exposed to
sunlight and the duration of exposure. To illustrate this rela-
tionship, a fully clothed person with the head and neck
exposed for 20 min would synthesise an equivalent amount of
vitamin D to exposing the whole body for 2 min (139). In the
summer, athletes who train and compete for prolonged peri-
ods in short-sleeved tops and shorts may not receive adequate
sun protection. In contrast, military recruits who train in long-
sleeved uniform and wear helmets (and those who train
indoors or who cover their skin for religious reasons) are at
risk of a lack of sun exposure and vitamin D deficiency. In
these groups at risk of vitamin D deficiency, alternative meth-
ods to increase vitamin D levels e.g. solar-simulated radiation
or oral supplementation warrant investigation (see recommen-
dations in section 10).

7.5 Sunscreen use 
The use of sunscreen interferes with vitamin D3 formation by
absorbing and reflecting UVB radiation, thus preventing UVB
radiation from reaching the target skin cells. Topical applica-
tion of a sunscreen of sun protection factor 8 was found to
limit vitamin D3 production in protected compared to unpro-
tected participants (94). Although sunscreen use can be bene-
ficial in preventing sunburn and skin cancer, it should be used
appropriately. For example, in the summer, athletes exposed
to UVB radiation for prolonged periods are at increased risk
of sunburn and should be encouraged to apply a broad-spec-
trum water-resistant sunscreen of at least SPF 30-50 every 2
to 4 hours (53). On the other hand, the elderly have a reduced
ability to synthesise vitamin D cutaneously and are at greater
risk of vitamin D deficiency. It has been recommended that
they expose their hands, face, arms and legs to summer sun-
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light two to three times a week for only ~¼ of the duration
that will take for them to reach mid sunburn and apply SPF ≥
15 on all exposed skin for any further time spent outdoors (61,
62). This will allow the elderly to obtain the beneficial effects
of sunlight for vitamin D nutrition whilst avoiding the detri-
mental effects of overexposure.

7.6 Natural food sources
As mentioned earlier, vitamin D can be obtained from the diet
(Table 6) by consuming foods such as oily fish (e.g. tuna,
mackerel, salmon), shiitake mushrooms and egg yolks (63).
Interestingly, an analysis of the vitamin D3 content in a variety
of oily fish showed that farmed salmon contains only 25% of
the vitamin D3 found in wild caught Alaskan salmon (30),
suggesting that wild-type fish are a better source of vitamin
D3 than farmed varieties. In countries such as America and
Canada, some foods such as milk, breakfast cereals and mar-
garine are also fortified with vitamin D in order to increase
vitamin D intake (23) (Table 6).

8. VITAMIN D TOXICITY

Excessive intake of vitamin D can result in vitamin D intoxi-
cation, which is characterised by hypercalcaemia (total serum
calcium corrected for albumin > 2.6 mmol/L), renal stones
and renal calcification, with kidney failure and death (57).
Except for infrequent cases of accidental or intentional poi-
soning, this is extremely rare. Both the intoxication literature
and several controlled dosing studies show no cases of con-
firmed intoxication at circulating 25(OH)D levels below 500
nmol/L. Correspondingly, the oral intakes needed to produce
such levels are in excess of 20, 000 IU/day in otherwise
healthy adults and 10, 000 IU/day (which is substantially

more than is apparently needed for any recog-
nised efficacy endpoint) is considered as the tol-
erable upper intake level (57). Incidentally, it is
worth noting that whole-body skin sun expo-
sure, such as might be achieved in a few minutes
on a summer day, produces an endogenous vita-
min D production of 10, 000 to 20, 000 IU,
depending upon skin type (9). Thus, frequent
summer sun exposures produce inputs of the
same magnitude as the proposed upper intake
level (can be characterised as a “physiological”)
and there has never been a case of vitamin D
intoxication reported as a result of sun exposure. 

The toxicity of intakes of high oral doses of
vitamin D has been established on the basis of
relatively short-term studies and there has to be
some concern about the longer-term implica-
tions for health of high vitamin D intakes over a
lifetime. The IoM indicates that sparse data are
available for upper circulating 25(OH)D levels
in humans, and values above 125-150 nmol/L
should raise concerns about potential adverse
effects because of several large scale studies
indicating an increased multivariable-adjusted
risk of all-cause mortality not only for circulat-
ing 25(OH)D levels below 30 nmol/L, but also

for levels above 125 nmol/L (66). The all-cause mortality data
emerging from the examination of national survey data as
well as observational studies suggest adverse effects at circu-
lating 25(OH)D levels much lower than those associated with
the toxicity demonstrated by short-term acute hypervita-
minosis D. In general, these studies, as expected, indicated
that low circulating 25(OH)D levels akin to < 30 nmol/L are
associated with an increased risk of mortality. Furthermore, as
circulating 25(OH)D levels increase up to a point mortality is
lowered. However, some, but not all, of the studies have
observed a troubling U-shaped relationship with a statistically
significant trend between increasing circulating 25(OH)D lev-
els and lower odds ratios for all-cause mortality. For these rea-
sons, a circulating 25(OH)D of above 125-150 nmol/L is not
recommended, corresponding to intakes of not more than 5,
000 IU/day in the absence of adequate sun exposure.

9. CONCLUSIONS 

A multitude of studies have suggested that vitamin D deficien-
cy (circulating 25(OH)D level < 30 nmol/L) not only has neg-
ative consequences on bone health but also increases the risk
for many acute and chronic illnesses, including respiratory
infections. Recent work in athletes shows beneficial effects of
optimising vitamin D status on innate immunity and mucosal
immunity and vitamin D exerts anti-inflammatory actions
through the induction of regulatory T cells and the inhibition
of pro-inflammatory cytokine production. Although the inci-
dence of vitamin D insufficiency (circulating 25(OH)D level
< 50 nmol/L) appears to be similar in athletic and non-athletic
populations, studies show that more than half of all athletes
and military personnel are vitamin D insufficient in the winter
months and as many as 35% are vitamin D deficient. To date,

 

Table 6. Dietary sources of vitamin D .  1

Sources Vitamin D content 
Natural foods  
Cod liver oil ~ 400 - 1000 IU/teaspoon vitamin D3 
Salmon (fresh, wild)   ~ 600 - 1000 IU/100 g vitamin D3 
Salmon (fresh, farmed)   ~ 100 - 250 IU/100 g vitamin D3 
Salmon (canned) ~ 300 - 600 IU/100 g vitamin D3 
Sardines (canned) ~ 300 IU/100 g vitamin D3 
Mackerel (canned) ~ 250 IU/100 g vitamin D3 
Tuna (canned) ~ 230 IU/100 g vitamin D3 
Herring in oil ~ 800 IU/100 g vitamin D3 
Pickled herring ~ 480 IU/100 g vitamin D3 
Shiitake mushrooms (fresh) ~ 100 IU/100 g vitamin D2 
Shiitake mushrooms (dried) ~ 1600 IU/100 g vitamin D2 
Egg yolk ~ 20 - 50 IU/yolk vitamin D3 
Cheese ~ 7 - 28 IU/100 g vitamin D3  
Cow’s milk ~ 0.4 - 1.2 IU/100 ml vitamin D3 
  
Fortified foods2  
Fortified milk ~ 100 IU/237 ml vitamin D3 
Fortified orange juice ~ 100 IU/237 ml vitamin D3 
Fortified yoghurts ~ 100 IU/237 ml vitamin D3 
Fortified butter ~ 50 IU/100 g vitamin D3 
Fortified margarine ~ 430 IU/100 g vitamin D3 
Fortified cheeses ~ 100 IU/85 g vitamin D3 
Fortified breakfast cereals  ~ 100 IU/30 g vitamin D3 

1Adapted from Holick et al. (63) and Pludowski et al. (109). 
2Countries with fortification policies include Australia, Finland, UK and the USA (77, 89, 98, 104). 
IU denotes international unit. 1 IU is equivalent to 0.025 µg. To convert µg to IU multiply by 40.   
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studies point to the benefits of avoiding vitamin D deficiency
to maintain immunity and reduce the burden of URI in ath-
letes and military personnel. In answer to the question posed
in the title of this review, there is broad agreement that a circu-
lating 25(OH)D level of 75 nmol/L represents an optimal vita-
min D status for the prevention of URI (97). Fruitful future
lines of enquiry include verification of this proposed optimal
vitamin D status to maintain immunity and resistance against
URI in athletes and military personnel. In addition, investiga-
tions should explore whether UVB exposure of the skin
(either from sunlight or an irradiation cabinet) has additional
benefits on immune function, health and exercise perform-
ance independent of the synthesis of vitamin D.

10. PRACTICAL RECOMMENDATIONS
(FIGURE 6)

In Figure 6 we attempt to provide some simple practical rec-
ommendations for athletes and military personnel on how
vitamin D sufficiency can be achieved in the summer and
maintained during the winter. Mindful of key factors such as
latitude and skin type, as little as 15 min of exposure to sum-
mer sunlight between 10am and 3pm wearing t-shirts and

shorts on most days can achieve vitamin D sufficiency in
most individuals and levels deemed optimal in some (Figure
5A and 6) (114, 140). Dietary sources of vitamin D and vita-
min D supplements become important considerations during
the winter months when skin sunlight as a source of vitamin
D is absent or drastically reduced (Figure 6). Studies have
shown that consuming a 1, 000 IU/day vitamin D3 supple-
ment during the winter can achieve vitamin D sufficiency in
most individuals (86, 89) and maintain end-of-summer
25(OH)D levels throughout the autumn and winter (Figure
5B) (86). Finally, the recommendation to take a 1, 000 IU/day
vitamin D3 supplement in the autumn-winter may also be
suitable for those who cannot achieve the safe summer sun-
light guidance (Figure 6). For example, individuals training
indoors in the summer or those required to wear clothing (for
protective or religious reasons) that restricts skin sunlight
exposure in the summer may benefit from 1, 000 IU/day vita-
min D3 supplementation year-round as there is evidence that
these individuals can suffer vitamin D deficiency, even dur-
ing the summer months (Table 2) (51, 52). Further research
endeavours are required to determine whether following
these recommendations for vitamin D benefit athletes and
military personnel by maintaining immunity and increasing
resistance against URI. 

Figure 6. Practical recommendations for athletes and military personnel on how vitamin D sufficiency can be achieved in the summer and main-
tained during the winter. 1Recommended summer sunlight exposure (114, 140). 2Recommended oral vitamin D3 supplementation (86, 89).
3Countries with fortification policies include Australia, Finland, UK and the USA (77, 89, 98, 104) but average dietary vitamin D intake remains
below 1, 000 IU/day. 4Sunlight safety recommendations (139, 140). 5Safety recommendations for oral vitamin D supplementation (57). UVB =
ultraviolet-B. URI = upper respiratory illness.
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