279 research outputs found

    Phase-shift calculation using continuum-discretized states

    Full text link
    We present a method for calculating scattering phase shifts which utilizes continuum-discretized states obtained in a bound-state type calculation. The wrong asymptotic behavior of the discretized state is remedied by means of the Green's function formalism. Test examples confirm the accuracy of the method. The α+n\alpha+n scattering is described using realistic nucleon-nucleon potentials. The 3/23/2^- and 1/21/2^- phase shifts obtained in a single-channel calculation are too small in comparison with experiment. The 1/2+1/2^+ phase shifts are in reasonable agreement with experiment, and gain contributions both from the tensor and central components of the nucleon-nucleon potential.Comment: 16 pages, 5 figure

    Structure of the mirror nuclei 9^9Be and 9^9B in a microscopic cluster model

    Get PDF
    The structure of the mirror nuclei 9^9Be and 9^9B is studied in a microscopic α+α+n\alpha+ \alpha+ n and α+α+p\alpha+ \alpha+ p three-cluster model using a fully antisymmetrized 9-nucleon wave function. The two-nucleon interaction includes central and spin-orbit components and the Coulomb potential. The ground state of 9^9Be is obtained accurately with the stochastic variational method, while several particle-unbound states of both 9^9Be and 9^9B are investigated with the complex scaling method.The calculation for 9^9Be supports the recent identification for the existence of two broad states around 6.5 MeV, and predicts the 322\frac{3}{2}^{-}_2 and 522\frac{5}{2}^{-}_2 states at about 4.5 MeV and 8 MeV, respectively. The similarity of the calculated spectra of 9^9Be and 9^9B enables one to identify unknown spins and parities of the 9^9B states. Available data on electromagnetic moments and elastic electron scatterings are reproduced very well. The enhancement of the EE1 transition of the first excited state in 9^9Be is well accounted for. The calculated density of 9^9Be is found to reproduce the reaction cross section on a Carbon target. The analysis of the beta decay of 9^9Li to 9^9Be clearly shows that the wave function of 9^9Be must contain a small component that cannot be described by the simple α+α+n\alpha+ \alpha+ n model. This small component can be well accounted for by extending a configuration space to include the distortion of the α\alpha-particle to t+pt+p and h+nh+n partitions.Comment: 24 page

    Measurement of inclusive jet production and nuclear modifications in pPb collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in pp collisions at root s=8 TeV

    Get PDF

    Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at root s=8 and 13 TeV

    Get PDF
    Peer reviewe

    Combined search for anomalous pseudoscalar HW couplings in VH(H -> b(b)over-bar) production and H -> VV decay

    Get PDF
    Peer reviewe

    Angular analysis of the decay B-0 -> K*(0)mu(+)mu(-) from pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Erratum to: Search for third-generation scalar leptoquarks in the tτ channel in proton-proton collisions at √s=8TeV

    Get PDF

    Observation of top quark pairs produced in association with a vector boson in pp collisions at s=8 √s=8TeV

    Get PDF
    Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 fb −1 , collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from t t ¯ W tt¯W or t t ¯ Z tt¯Z decays. The t t ¯ W tt¯W cross section is measured to be 382 − 102 + 117 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The t t ¯ Z tt¯Z cross section is measured to be 242 − 55 + 65 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the t t ¯ W tt¯W and t t ¯ Z tt¯Z cross sections

    Search for dark matter particles in proton-proton collisions at √s=8 TeV using the razor variables

    Get PDF
    A search for dark matter particles directly produced in proton-proton collisions recorded by the CMS experiment at the LHC is presented. The data correspond to an integrated luminosity of 18.8 fb−1, at a center-of-mass energy of 8 TeV. The event selection requires at least two jets and no isolated leptons. The razor variables are used to quantify the transverse momentum balance in the jet momenta. The study is performed separately for events with and without jets originating from b quarks. The observed yields are consistent with the expected backgrounds and, depending on the nature of the production mechanism, dark matter production at the LHC is excluded at 90% confidence level for a mediator mass scale Λ below 1 TeV. The use of razor variables yields results that complement those previously published
    corecore