171 research outputs found

    Ab initio oscillator strengths for transitions between J=1 odd and J=1,2 even excited states of Ne I

    Get PDF
    Ab initio theory is developed for radiative transitions between excited states of neon. Calculations of energies for even excited states J=1, J=2 supplement our previous calculations for J=1 odd excited states. Line strengths for transitions between J=1 odd and J=1,2 even states of Ne I are evaluated. A comparison with experiments and semiempirical calculations is given.Comment: 5 page

    NMR detection with an atomic magnetometer

    Full text link
    We demonstrate detection of NMR signals using a non-cryogenic atomic magnetometer and describe several novel applications of this technique. A water free induction decay (FID) signal in a 0.5 μ\muT field is detected using a spin-exchange-relaxation-free K magnetometer and the possibility of using a multi-channel magnetometer for 3-D MRI requiring only a single FID signal is described. We also demonstrate detection of less than 101310^{13} 129^{129}Xe atoms whose NMR signal is enhanced by a factor of 540 due to Fermi-contact interaction with K atoms. This technique allows detection of less than 10910^{9} 129^{129}Xe spins in a flowing system suitable for remote NMR applications

    Detection of NMR signals with a radio-frequency atomic magnetometer

    Full text link
    We demonstrate detection of proton NMR signals with a radio frequency atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2^{1/2} using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.Comment: 7 page
    corecore