334 research outputs found

    Changes in standard of candidates taking the MRCP(UK) Part 1 examination, 1985 to 2002: Analysis of marker questions

    Get PDF
    The maintenance of standards is a problem for postgraduate medical examinations, particularly if they use norm-referencing as the sole method of standard setting. In each of its diets, the MRCP(UK) Part 1 Examination includes a number of marker questions, which are unchanged from their use in a previous diet. This paper describes two complementary studies of marker questions for 52 diets of the MRCP(UK) Part 1 Examination over the years 1985 to 2001 to assess whether standards have changed

    What can one learn from two-state single molecule trajectories?

    Get PDF
    A time trajectory of an observable that fluctuates between two values (say, on and off), stemming from some unknown multi-substate kinetic scheme, is the output of many single molecule experiments. Here we show that when all successive waiting times along the trajectory are uncorrelated the on and the off waiting time probability density functions (PDFs) contain all the information. By relating the lack of correlation in the trajectory to the topology of kinetic schemes, we can immediately specify those kinetic schemes that are equally consistent with experiment, which means that it is impossible to differentiate between them by any sophisticated analyses of the trajectory. Correlated trajectories, however, contain additional information about the underlying kinetic scheme, and we consider the strategy that one should use to extract it. An example is given on correlations in the activity of individual lipase molecules.Comment: Biophys. J., in press (2005

    The holistic phase model of early adult crisis

    Get PDF
    The objective of the current study was to explore the structural, temporal and experiential manifestations of crisis episodes in early adulthood, using a holistic-systemic theoretical framework. Based on an analysis of 50 interviews with individuals about a crisis episode between the ages of 25 and 35, a holistic model was developed. The model comprises four phases: (1) Locked-in, (2) Separation/Time-out, (3) Exploration and (4) Rebuilding, which in turn have characteristic features at four levels—person-in-environment, identity, motivation and affect-cognition. A crisis starts out with a commitment at work or home that has been made but is no longer desired, and this is followed by an emotionally volatile period of change as that commitment is terminated. The positive trajectory of crisis involves movement through an exploratory period towards active rebuilding of a new commitment, but ‘fast-forward’ and ‘relapse’ loops can interrupt Phases 3 and 4 and make a positive resolution of the episode less likely. The model shows conceptual links with life stage theories of emerging adulthood and early adulthood, and it extends current understandings of the transitional developmental challenges that young adults encounter

    Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children

    Get PDF
    Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions

    Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase

    Get PDF
    The effects of three soluble polysaccharides on the inhibitory activity of tea polyphenols against porcine pancreatic α-amylase (PPA) were studied through PPA inhibition, half inhibition concentration (IC50), inhibition kinetics and fluorescence quenching. The results show that citrus pectin, wheat arabinoxylan and oat β-glucan could each increase the IC50 values and competitive inhibition constants (Kic), and decrease the fluorescence quenching constants (KFQ) of tea polyphenols interacting with PPA. The data show a competitive interaction equilibrium among polysaccharides, polyphenols and PPA. For individual polyphenols, there were negative linear correlations between both the values of 1/Kic and KFQ and that of IC50 with and without polysaccharides, indicating that the decreased inhibitory activity of polyphenols induced by the polysaccharides was caused by the reduced binding of polyphenols with PPA. Additionally, the slopes of the linear relationship between IC50 and Kic and that between KFQ and 1/Kic remained stable with and without polysaccharides, suggesting that these constants may be combined to characterize the effects of soluble polysaccharides on the PPA inhibition by polyphenols

    Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice

    Get PDF
    Mesenchymal stem cells (MSC) have recently attracted interest as a potential basis for a cell based therapy of AD. We investigated the putative immune-modulatory effects in neuroinflammation of systemic transplantation of MSC into APP/PS1 transgenic mice.10(6) MSC were injected into APP/PS1 mice via the tail vein and histological analysis was performed for microglia and amyloid (pE3-A[beta]) plaque numbers, glial distribution and pE3-A[beta] plaque size. In addition, a biochemical analysis by qPCR for pro-inflammatory, chemoattractant and neurotrophic factors was performed.MSC co-localized with pE3-A[beta] plaques. The effects of transplantation on microglia-associated pathology could be observed after 28 hours. Animals showed a reduction in microglial numbers in the cortex and in size. Gene expression was reduced for TNF-[alpha], IL-6, MCP-1, and for NGF, in MSC recipients. Also, we investigated for the first time and found no changes in expression of IL-10, CCR5, BDNF, VEGF and IFN[gamma]. PTGER2 expression levels were increased in the hippocampus but were reduced in the cortex of MSC recipients. While there were no transplant-related changes in pE3-A[beta] plaque numbers, a reduction in the size of pE3-A[beta] plaques was observed in the hippocampus of transplant recipients.This is the first study to show reduction in pE3-A[beta] plaque size. pE3-A[beta] plaques have gained attention as potential key participants in AD due to their increased aggregation propensity, the possibility for the initial seeding event, resistance against degradation and neurotoxicity. These findings support the hypothesis that MSC-transplants may affect AD pathology via an immune modulatory function that includes an effect on microglial cells

    Assessment of examiner leniency and stringency ('hawk-dove effect') in the MRCP(UK) clinical examination (PACES) using multi-facet Rasch modelling

    Get PDF
    BACKGROUND: A potential problem of clinical examinations is known as the hawk-dove problem, some examiners being more stringent and requiring a higher performance than other examiners who are more lenient. Although the problem has been known qualitatively for at least a century, we know of no previous statistical estimation of the size of the effect in a large-scale, high-stakes examination. Here we use FACETS to carry out a multi-facet Rasch modelling of the paired judgements made by examiners in the clinical examination (PACES) of MRCP(UK), where identical candidates were assessed in identical situations, allowing calculation of examiner stringency. METHODS: Data were analysed from the first nine diets of PACES, which were taken between June 2001 and March 2004 by 10,145 candidates. Each candidate was assessed by two examiners on each of seven separate tasks. with the candidates assessed by a total of 1,259 examiners, resulting in a total of 142,030 marks. Examiner demographics were described in terms of age, sex, ethnicity, and total number of candidates examined. RESULTS: FACETS suggested that about 87% of main effect variance was due to candidate differences, 1% due to station differences, and 12% due to differences between examiners in leniency-stringency. Multiple regression suggested that greater examiner stringency was associated with greater examiner experience and being from an ethnic minority. Male and female examiners showed no overall difference in stringency. Examination scores were adjusted for examiner stringency and it was shown that for the present pass mark, the outcome for 95.9% of candidates would be unchanged using adjusted marks, whereas 2.6% of candidates would have passed, even though they had failed on the basis of raw marks, and 1.5% of candidates would have failed, despite passing on the basis of raw marks. CONCLUSION: Examiners do differ in their leniency or stringency, and the effect can be estimated using Rasch modelling. The reasons for differences are not clear, but there are some demographic correlates, and the effects appear to be reliable across time. Account can be taken of differences, either by adjusting marks or, perhaps more effectively and more justifiably, by pairing high and low stringency examiners, so that raw marks can be used in the determination of pass and fail

    Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima

    Get PDF
    This work was funded by an Austrian Science Fund (FWF) project (Y661-B16) awarded to OP and a Marie Curie IEF fellowship (PERG-GA-2011-299608-TRANSADAPTATION) to FB.The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and D. fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, Dactylorhiza incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.Publisher PDFPeer reviewe

    Cis-by-Trans Regulatory Divergence Causes the Asymmetric Lethal Effects of an Ancestral Hybrid Incompatibility Gene

    Get PDF
    The Dobzhansky and Muller (D-M) model explains the evolution of hybrid incompatibility (HI) through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles

    Toward a quantitative understanding of the Wnt/beta-catenin pathway through simulation and experiment

    Get PDF
    Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co‐activator β‐catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β‐catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time‐dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β‐catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena
    corecore