1,123 research outputs found

    Macroscopic nucleation phenomena in continuum media with long-range interactions

    Get PDF
    Nucleation, commonly associated with discontinuous transformations between metastable and stable phases, is crucial in fields as diverse as atmospheric science and nanoscale electronics. Traditionally, it is considered a microscopic process (at most nano-meter), implying the formation of a microscopic nucleus of the stable phase. Here we show for the first time, that considering long-range interactions mediated by elastic distortions, nucleation can be a macroscopic process, with the size of the critical nucleus proportional to the total system size. This provides a new concept of "macroscopic barrier-crossing nucleation". We demonstrate the effect in molecular dynamics simulations of a model spin-crossover system with two molecular states of different sizes, causing elastic distortions.Comment: 12 pages, 4 figures. Supplementary information accompanies this paper at http://www.nature.com/scientificreport

    Spin and valley quantum Hall ferromagnetism in graphene

    Full text link
    In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic' zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed

    Ab initio alpha-alpha scattering

    Get PDF
    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.Comment: 6 pages, 6 figure

    Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state

    Get PDF
    Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases1, 2, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum3, 4. Weakly breaking this symmetry generates a gap on the surface5, resulting in charge carriers with finite effective mass and exotic spin textures6. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state7, 8. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state9, 10 when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems7, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability11, 12, 13, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with a tunable bandgap and an associated spin texture.United States. Dept. of Energy (Office of Science, BES Program, contract no. FG02-08ER46514)Gordon and Betty Moore FoundationGordon and Betty Moore Foundation (grant GBMF2931)United States. Dept. of Energy (Office of Science, BES Office, BES Office, Division of Materials Sciences and Engineering, under award DE-SC0001819)Massachusetts Institute of Technology (Pappalardo Fellowship in Physics

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    Full text link
    Topological insulators are characterized by a nontrivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates, and external gate voltages. We predict that LaAuO3_3 bilayers have a topologically-nontrivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin-Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly-flat topologically-nontrivial bands found in ege_g systems are also discussed.Comment: Main text 11 pages with 4 figures and 1 table. Supplementary materials 4 pages with 2 figure

    VortrÀge zum 4. DarmstÀdter Geotechnik-Kolloquium am 13. MÀrz 1997

    Get PDF
    Mit dem Mitteilungsheft Nr. 37 publizieren das Institut und die Versuchsanstalt fĂŒr Geotechnik der Technischen Hochschule Darmstadt die BeitrĂ€ge zum 4. DarmstĂ€dter Geo- technik-Kolloquium mit den folgenden Themenschwerpunkten: - Internationale Projekte/Projekterfahrungen - Möglichkeiten und Grenzen der Kombinierten Pfahl-PlattengrĂŒndung (KPP) - Rechtsfragen in der Geotechni

    Insights into the post-transcriptional regulation of the mitochondrial electron transport chain

    Get PDF
    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction
    • 

    corecore