309 research outputs found

    Decision Problems For Convex Languages

    Full text link
    In this paper we examine decision problems associated with various classes of convex languages, studied by Ang and Brzozowski (under the name "continuous languages"). We show that we can decide whether a given language L is prefix-, suffix-, factor-, or subword-convex in polynomial time if L is represented by a DFA, but that the problem is PSPACE-hard if L is represented by an NFA. In the case that a regular language is not convex, we prove tight upper bounds on the length of the shortest words demonstrating this fact, in terms of the number of states of an accepting DFA. Similar results are proved for some subclasses of convex languages: the prefix-, suffix-, factor-, and subword-closed languages, and the prefix-, suffix-, factor-, and subword-free languages.Comment: preliminary version. This version corrected one typo in Section 2.1.1, line

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    Precision and neuronal dynamics in the human posterior parietal cortex during evidence accumulation

    Get PDF
    Primate studies show slow ramping activity in posterior parietal cortex (PPC) neurons during perceptual decision-making. These findings have inspired a rich theoretical literature to account for this activity. These accounts are largely unrelated to Bayesian theories of perception and predictive coding, a related formulation of perceptual inference in the cortical hierarchy. Here, we tested a key prediction of such hierarchical inference, namely that the estimated precision (reliability) of information ascending the cortical hierarchy plays a key role in determining both the speed of decision-making and the rate of increase of PPC activity. Using dynamic causal modelling of magnetoencephalographic (MEG) evoked responses, recorded during a simple perceptual decision-making task, we recover ramping-activity from an anatomically and functionally plausible network of regions, including early visual cortex, the middle temporal area (MT) and PPC. Precision, as reflected by the gain on pyramidal cell activity, was strongly correlated with both the speed of decision making and the slope of PPC ramping activity. Our findings indicate that the dynamics of neuronal activity in the human PPC during perceptual decision-making recapitulate those observed in the macaque, and in so doing we link observations from primate electrophysiology and human choice behaviour. Moreover, the synaptic gain control modulating these dynamics is consistent with predictive coding formulations of evidence accumulation

    Moisture susceptibility of high and low compaction dry process crumb rubber modified asphalt mixtures

    Get PDF
    The field performance of dry process crumb rubber-modified (CRM) asphalt mixtures has been reported to be inconsistent with stripping and premature cracking on the surfacing. One of the concerns is that, because achieving field compaction of CRM material is difficult due to the inherent resilient nature of the rubber particle, nonuniform field compaction may lead to a deficient bond between rubber and bitumen. To assess the influence of compaction, a series of CRM and control mixtures was produced and compacted at two levels: 4% (low, optimum laboratory compaction) and 8% (high, field experience) air void content. The long-term durability, in regard to moisture susceptibility of the mixtures, was assessed by conducting repeated moisture conditioning cycles. Mechanical properties (stiffness, fatigue, and resistance to permanent deformation) were determined in the Nottingham Asphalt Tester. Results indicated that compared with conventional mixtures, the CRM mixtures, regardless of compaction effort, are more susceptible to moisture with the degree of susceptibility primarily depending on the amount of rubber in the mixture, rather than the difference in compaction. This behavior is different from that of conventional mixtures in which, as expected, poorly compacted mixtures were found to be more susceptible to moisture than were well-compacted mixtures

    Separating Regular Languages by Piecewise Testable and Unambiguous Languages

    Full text link
    Abstract. Separation is a classical problem asking whether, given two sets belonging to some class, it is possible to separate them by a set from another class. We discuss the separation problem for regular languages. We give a Ptime algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BÎŁ1(<) sentence can witness that the languages are disjoint. The proof refines an algebraic argument from Almeida and the third author. When separation is possible, we also express a separator by saturating one of the original languages by a suitable congruence. Following the same line, we show that one can as well decide whether two regular languages can be separated by an unambiguous language, albeit with a higher complexity.

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore