139 research outputs found
Soil chemistry aspects of predicting future phosphorus requirements in Sub-Saharan Africa
Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modelling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modelling predicts twice as much P required to 2050 as our new proposed model.
Plain language summary
Improving food security in Sub‐Saharan Africa over the coming decades requires a dramatic increase in agricultural yields. Global yield increase has been driven by, amongst other factors, the widespread use of fertilisers including phosphorus. The use of fertilisers in Sub‐Saharan Africa is often prohibitively expensive and thus the most efficient use of phosphorus should be targeted. Soil chemistry largely controls phosphorus efficiency in agriculture, for example iron and aluminium which exist naturally in soil reduce the availability of phosphate to plants. Yet soil chemistry has not been included in several influential large‐scale modelling studies which estimate phosphorus requirements in Sub‐Saharan Africa to 2050. In this study we show that predictions of phosphorus requirement to feed the population of Sub‐Saharan Africa to 2050 can significantly change if soil chemistry is included (e.g. Somalia with up to 50% difference). Our findings are a new step towards making predictive decision‐making tool for phosphorus fertiliser management in Sub‐Saharan Africa considering the variability of soil chemistry
An exploration of social determinants of health amongst internally displaced persons in northern Uganda
Social determinants of health describe the conditions in which people are born, grow, live, work and age and their influence on health. These circumstances are shaped by the distribution of money, power and resources at global, national and local levels, which are themselves influenced by policy choices. Armed conflict and forced displacement are important influences on the social determinants of health. There is limited evidence on the social determinants of health of internally displaced persons (IDPs) who have been forced from their homes due to armed conflict but remain within the borders of their country. The aim of this study was to explore the social determinants of overall physical and mental health of IDPs, including the response strategies used by IDPs to support their health needs. Northern Uganda was chosen as a case-study, and 21 face-to-face semi-structured interviews with IDPs were conducted in fifteen IDP camps between November and December 2006
Persistent effects of pre-Columbian plant domestication on Amazonian forest composition
The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely to be hyperdominant than non-domesticated species. Across the basin the relative abundance and richness of domesticated species increases in forests on and around archaeological sites. In southwestern and eastern Amazonia distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples
Geography and ecology shape the phylogenetic composition of Amazonian tree communities.
Aim Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location Amazonia. Taxon Angiosperms (Magnoliids; Monocots; Eudicots). Methods Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.Na publicação: Joice Ferreira
Seasonal drought limits tree species across the Neotropics
Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region
Seasonal drought limits tree species across the Neotropics
AcceptedArticle in Press© 2016 Nordic Society Oikos.Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this 'dry-tolerance' hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the 'dry tolerance' hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.This paper is a product of the RAINFOR and ATDN networks and of ForestPlots.net
researchers (http://www.forestplots.net). RAINFOR and ForestPlots have been
supported by a Gordon and Betty Moore Foundation grant, the European Union’s
Seventh Framework Programme (283080, ‘GEOCARBON’; 282664,
‘AMAZALERT’); European Research Council (ERC) grant ‘Tropical Forests in the
Changing Earth System’ (T-FORCES), and Natural Environment Research Council
(NERC) Urgency Grant and NERC Consortium Grants ‘AMAZONICA’
(NE/F005806/1) and ‘TROBIT’ (NE/D005590/1). Additional funding for fieldwork was
provided by Tropical Ecology Assessment and Monitoring (TEAM) Network, a
collaboration among Conservation International, the Missouri Botanical Garden, the
Smithsonian Institution, and the Wildlife Conservation Society. A.E.M. receives a PhD
scholarship from the T-FORCES ERC grant. O.L.P. is supported by an ERC Advanced
Grant and a Royal Society Wolfson Research Merit Award. We thank Jon J. Lloyd,
Chronis Tzedakis, David Galbraith, and two anonymous reviewers for helpful
comments and Dylan Young for helping with the analyses. This study would not be
possible without the extensive contributions of numerous field assistants and rural
communities in the Neotropical forests. Alfredo Alarcón, Patricia Alvarez Loayza,
Plínio Barbosa Camargo, Juan Carlos Licona, Alvaro Cogollo, Massiel Corrales
Medina, Jose Daniel Soto, Gloria Gutierrez, Nestor Jaramillo Jarama, Laura Jessica
Viscarra, Irina Mendoza Polo, Alexander Parada Gutierrez, Guido Pardo, Lourens
Poorter, Adriana Prieto, Freddy Ramirez Arevalo, Agustín Rudas, Rebeca Sibler and
Javier Silva Espejo additionally contributed data to this study though their RAINFOR
participations. We further thank those colleagues no longer with us, Jean Pierre Veillon,
Samuel Almeida, Sandra Patiño and Raimundo Saraiva. Many data come from Alwyn
Gentry, whose example has inspired new generations to investigate the diversity of the
Neotropics
Biased-corrected richness estimates for the Amazonian tree flora
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come
Local hydrological conditions influence tree diversity and composition across the Amazon basin
Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis).
Time period: Tree-inventory plots established between 1934 and 2019.
Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm.
Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield.
Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes.
Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests.
Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
- …