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Abstract Phosphorus (P) is a finite resource and critical to plant growth and therefore food security.
Regional‐ and continental‐scale studies propose how much P would be required to feed the world by
2050. These indicate that Sub‐Saharan Africa soils have the highest soil P deficit globally. However, the
spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has
never been addressed. We provide a combination of a broadly adopted P‐sorption model that is
integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show
significant differences between the model outputs in both the soil‐P concentrations and total P required
to produce future crops for the same predicted scenarios. These results indicate the importance of soil
chemistry for soil‐nutrient modeling and highlight that previous influential studies may have
overestimated P required. This is particularly the case in Somalia where conventional modeling predicts
twice as much P required to 2050 as our new proposed model.

Plain Language Summary Improving food security in Sub‐Saharan Africa over the coming
decades requires a dramatic increase in agricultural yields. Global yield increase has been driven by,
among other factors, the widespread use of fertilizers including phosphorus. The use of fertilizers in
Sub‐Saharan Africa is often prohibitively expensive, and thus, the most efficient use of phosphorus
should be targeted. Soil chemistry largely controls phosphorus efficiency in agriculture; for example,
iron and aluminum, which exist naturally in soil, reduce the availability of phosphate to plants. Yet soil
chemistry has not been included in several influential large‐scale modeling studies, which estimate
phosphorus requirements in Sub‐Saharan Africa to 2050. In this study we show that predictions of
phosphorus requirement to feed the population of Sub‐Saharan Africa to 2050 can significantly change
if soil chemistry is included (e.g., Somalia with up to 50% difference). Our findings are a new step
toward making predictive decision‐making tool for phosphorus fertilizer management in Sub‐Saharan
Africa considering the variability of soil chemistry.

1. Introduction

Phosphorus (P) is an element that is crucial to plant growth and has been described as life's bottleneck
(Cordell & White, 2014). Yet it is also a finite resource for which estimates of remaining stores differ
greatly (Cordell et al., 2009; Cordell & Neset, 2014; Van Vuuren et al., 2010). Its supply is critical to
food security, and as the global population grows, demand will continue to increase as well.
Therefore, global P requirement over the coming century has become a major concern (Bouwman
et al., 2017; Elser & Bennett, 2011; Sattari et al., 2012, 2016). Current estimates suggest that 1,200 Gt of
P will be required globally to support food production to 2050. Of this 140 Gt will be required in Sub‐
Saharan Africa (SSA). However, the crisis is most serious in SSA because the P application should
increase from 4.0 kg · ha−1 · yr−1 in 2007 to 22 kg · ha−1 · yr−1 by 2050, a 5.6‐fold increase. To put this into
context, the only other continent, which is also expected to require an increase in P application, is North
America, which requires a 1.55‐fold increase (from 11 to 18 kg · ha−1 · yr−1 in the same period). All other
continents are predicted to either maintain or decrease P application rates (Sattari et al., 2012).
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The quantitative P requirement for 2050 at a continental scale has been estimated using the dynamic two P‐
pool simulator (DPPS) in combination with theMillennium EcosystemAssessment (MEA) scenarios (Sattari
et al., 2012; Zhang et al., 2017). The MEA was a large project commissioned by the United Nations between
2001 and 2004 assessing of the state of global ecosystems and the effects this would have on human well‐
being. The findings outline a range of resource scenarios (e.g., for clean water, food, forest products, flood
control, and natural resources) to 2050 dependent upon different global behaviors (Millennium Ecosystem
Assessment, 2005). The conceptual framework of Shared Socioeconomic Pathways has been specifically
developed to account for human behavior the field of environmental and climatic modeling. It outlines five
alternative plausible societal trends, which will have varying impacts on ecosystems and the economy
(O'Neill et al., 2014; van Vuuren et al., 2014). These predictive scenarios are used to constrain future ele-
ments of DPPS (Mogollón et al., 2018; Zhang et al., 2017). DPPS results have been highly influential both
within the scientific community and in policy development (e.g., Parliamentary Office of Science and
Technology, 2014).

The DPPS model distinguishes two soil P pools, labile, and stable P. The labile pool comprises P that is par-
tially available to plants and can be up‐taken from soil, while stable P refers to the fraction that is inacces-
sible to plants. In DPPS, these pools are utilized to understand current P trends and make future
predictions (Figure 1; Sattari et al., 2012; Wolf et al., 1987; Zhang et al., 2017). DPPS calculates how much
P is required to keep pace with the population growth and associated food demand and agricultural produc-
tion and land use as defined by MEA (Alcamo et al., 2005). A recent development of DPPS is the spatially
specific gridded version, which predicts P use globally on a 0.5 by 0.5° grid (Zhang et al., 2017). The input
and output data for this approach are from the Integrated Assessment of Global Environmental Change
(IMAGE), an ecological‐environmental model framework which assess and predicts consequences to the
environment of anthropogenic activities globally (Stehfest et al., 2014). Included within this are data on P
uptake for each grid cell based on Food and Agriculture Organization (2018); these do not represent uptakes
of individual crops but rather the sum of the P uptake of all the crops in that grid cell. The crop uptake pre-
dicted by the model using P input data is compared to the data on total P uptake for historical years. For the
future, DPPS uses projected crop uptake to compute the required inputs.

In soils the P exchange between the pools is largely controlled by the concentration of oxalate extractable
iron and aluminum (i.e., the amount of amorphous iron and aluminum; Freese et al., 1992; van der Zee &
van Riemsdijk, 1988). The higher these iron and aluminum concentrations are, the greater the sequestration
of P from labile to stable will be (Freese et al., 1992, 1995; van der Zee & van Riemsdijk, 1988). Including such
sorption processes in catchment scale P‐models have increased precision (Della Peruta et al., 2014; Jackson‐
Blake et al., 2016); however, in previous continental, regional, and country‐scale studies, the role of soil

Figure 1. Sketch of the dynamic phosphorus pool simulator (after Zhang et al., 2017).
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chemistry in P requirement assessment has been ignored. Accounting for soil chemical spatial heterogeneity
when addressing the P‐deficit question has been highlighted as an area in need of urgent research (Magnone
et al., 2017).

In this study, we aim to investigate the impact of soil heterogeneity on estimated P requirement in dif-
ferent soil types in SSA. We combine a soil‐P chemical model that has been used in diverse soil types
and climate zones (Freese et al., 1992; van der Zee & van Riemsdijk, 1988), with a large‐scale soil P
dynamics model, DPPS (Sattari et al., 2012; Wolf et al., 1987; Zhang et al., 2017). This integrated model
(referred to as GDPPS) is used to characterize how spatial variability of soil properties translates in dif-
ferences in P requirements across SSA. Additionally, we address the long‐term behavior of the SSA
countries in response to the P application depending on their indigenous soil types.

We study eight countries in SSA (Burkina Faso, Nigeria, Angola, Mozambique, Cameroon, D. R. Congo,
Somalia and Sudan) divided among four dominant soil types (Alfisol, Ultisol, Oxisol, and Vertisol). Each
country has been selected to be representative of a relatively high or low P input throughout the 20th century.
Additionally, we studied four countries with mixed soils (Cote d'Ivoire, Ethiopia, Kenya, and Tanzania) for
model verification.

2. Methods
2.1. Model Formulations

DPPS calculates the concentration of P inputs required to maintain food production for a given scenario. It
has two P pools, the partially plant‐accessible labile pool (Olsen et al., 1954) and the inaccessible stable pool
(Sattari et al., 2012; Yang et al., 2013). Of the labile pool it is only themobile phase (determined by fr_mobile),
which is available to plants (Olsen et al., 1954; Zhang et al., 2017). Each pool has different inputs and out-
puts: litter, manure, and fertilizer to the labile pool and atmospheric deposition and fresh soil input to the
stable pool. Outputs include runoff for both pools as well as plant uptake for the labile. P can be transferred
between the labile and stable pools at different rates, referred to as μSL and μLS (Figure 1). Within DPPS, the
mass transfer rates between the two pools are constant in time but vary spatially (Sattari et al., 2012, 2016;
Vitousek et al., 2009; Wolf et al., 1987). The DPPS governing equations are given by equations (1) and (2)
(Sattari et al., 2012; Zhang et al., 2017):

dL
dt

¼ μSLS−μLSLþ f Lit þ f Fert þ fMan þ fwt þ f fsL−f RL
−f c (1)

dS
dt

¼ μLSL−μSLSþ f At þ f fsS−f Rs
(2)

where the temporal change of the labile pool size (dL/dt) is due to input fluxes (kg · ha−1 · yr−1) from ferti-
lizer (fFert), litter (fLit), manure (fMan), fresh soil (fSL), and weathering (fwt) and outputs from runoff (fRL) and
crop uptake (fc). Additionally, there are transfer fluxes between the two pools, μSL (yr−1) and μLS (yr−1),
which represent the transfer rates stable to labile pool and labile to stable pool, respectively—in DPPS these
parameters are constrained by history matching (Sattari et al., 2012; Zhang et al., 2017). The change in stable
pool size (dS/dt) is controlled by the balance of input fluxes (kg · ha−1 · yr−1) from atmospheric deposition
(fAt), fresh soil (ffsS), and outputs of runoff (fRS).

To develop the GDPPS model, we incorporated a soil chemistry model into DPPS based on the van der Zee
and Van Riemsdijk model (vdZ‐vR; Freese et al., 1992; van der Zee & van Riemsdijk, 1988). This charac-
terizes the kinetic relationship between the labile and stable pools. The vdZ‐vR model was successfully
applied to the Brazilian tropical soils similar to those of SSA (Alleoni et al., 2012; de Campos et al., 2016),
across a range of pH‐values (Andersson et al., 2016; do Carmo Horta et al., 2010; do Carmo Horta &
Torrent, 2007; Freese et al., 1995; House et al., 2004; Maguire et al., 2001); all of which were within the range
of SSA soils (Hengl et al., 2017). vdZ‐vR (Freese et al., 1992; van der Zee & van Riemsdijk, 1988) states that
the concentration of the stable pool controlled by the chemical kinetics (Sc, kg · ha

−1) is proportional to the
size of weathered (amorphous, oxalate‐extractable) Fe and Al oxide concentrations and the size of the labile
pool. It is described as follows:
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Sc ¼ k·M· ln a·L·tð Þ (3)

where L is the labile pool (kg · ha−1), a is the rate constant (ha · year−1 · kg−1),M is the oxalate iron and alu-
minum (kg · ha−1), and k is a dimensionless activity constant. By differentiating vdZ‐vR (Freese et al., 1992;
van der Zee & van Riemsdijk, 1988) with the chain rule a local approximate kinetic soil P model is derived
(equations (4) and (5)). This controls the transfer of P between labile and stable pools with the amorphous
fractions of iron and aluminum oxides and hydroxides, which are commonly quantified by the acid‐
ammonia oxalate (oxalate) extraction in a routine soil analysis procedure (van der Zee & van Riemsdijk,
1988).

dSc
dL

¼ kM
L

(4)

dSc
dt

¼ dSc
dL

dL
dt

¼ kM
L

dL
dt

(5)

Where the labile pool increases, the μLS transfer is equal to dSc/dt. The opposite rate transfer, μSL, is assumed
to be caused by the dissolution of the total stable pool (S, kg · ha−1) at a constant rate (r, yr−1). Thus, multi-
plying the stable pool by the rate, S · rS provides the flux from stable pool dissolution (kg · ha−1 · yr−1).
Substituting these into DPPS (equations (1) and (2)) provides the governing equations for GDPPS equa-
tions (6) and (7):

dL
dt

¼ f Lit þ f Fert þ fMan þ f wt þ f fsL−f RL
−f c þ S·rS

1þ k·M
L

(6)

dS
dt

¼ f At þ f fsS−f Rs
−S·rS þ k·M

L
·
dL
dt

(7)

2.2. Model Parameterization

For both models, consistent with Zhang et al. (2017), the input and output data were from the IMAGE pro-
ject (E. Stehfest et al., 2014) and initial pool sizes were provided by Yang et al. (2013). Initialization for both
models occurs in 1900 assuming a steady state condition. During the historical part (<2006), the equations
are solved with the unknown fr_mobile,and the size of the pools is determined for each year. For the scenario
mode fr_mobile is provided by using a regional specific multiplier for the 2005 value (which is different for
the two models). Annual fr_mobile values are provided in the supporting information.

For GDPPS values forMwere provided by ISRIC through the SoilGrids project andmaintained constant and
throughout the duration of the modeled period (Hengl et al., 2017). We determined the activity constant, k,
for each individual grid cell from the virgin soils conditions assuming that a is unity (i.e., a = 1; van der Zee
& van Riemsdijk, 1988) and that soils had been in equilibrium for 400 years (Goldewijk et al., 2010;
Nicholson et al., 2013). The dissolution rate constant, r, was determined individually for all grid cells and
kept constant throughout the modeled period. This determination was achieved using virgin soils and only
natural forcings (i.e., deposition, weathering, and runoff) and no anthropogenic (i.e., fertilizer) for the year
1900 (i.e., year 0). We assumed that under virgin conditions, there would be no net annual change in pool
size and calculated r was calculated to ensure this occurred. For this study, k ranges from 0.01 to 1.06 with
a mean (± standard deviation) of 0.13 ± 0.10 (skew = 2.29) and r for DPPS ranges from 0.011 to 0.02/year
with a mean (± standard deviation) of 0.019 ± 0.005/year (skew = 0.31), while GDPPS ranges from
9.47 × 10−7/year to 7.79 × 10−4/year with a mean of 6.20 ± 7.04 × 10−5/year (skew = 2.41). We note that
GDPPS provides a more realistic dissolution rate when compared to experimental data from Nigerian soils,
which indicated a dissolution rate of approximately 2 × 10−5/year (Agbenin, 2004).

2.3. Sub‐Saharan African Countries

Ten SSA countries were selected based on soil type and P input history (Bouwman et al., 2006). For each soil
type, two countries with contrasting, or at least different, P histories were chosen (Table 1). Four additional
countries Côte d'Ivoire, Ethiopia, Kenya, and Tanzania were also selected for model validation as there are
excellent data sets in those countries during the 20th century (Leenaars, 2013).
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Chemically, Alfisols havemostly moderate extractable Fe and Al con-
centrations (100–200 mg · kg−1 and 400–800 mg · kg−1, respectively).
Oxisols also have moderate extractable Fe concentrations (100–
200 mg · kg−1). However, Al concentrations are much greater in these
soils with most of Angolan soils having a concentration of approxi-
mately 1,000 mg · kg−1 but Mozambique's soils ranging from 700 to
1,000 mg · kg−1. Ultisols have extractable Fe concentrations in the
range of 100–300 mg · kg−1 and extractable Al concentrations in the
range of 750–1200 mg · kg−1. The highest Al concentrations in
Ultisols are in Cameroon and the lowest in D.R. Congo. Finally,
Vertisol soils are characterized by high extractable Al concentrations
(>1,000 mg · kg−1) but relatively low extractable Fe concentrations
(100–200 mg · kg−1; Hengl et al., 2017).

2.4. Model Validation

To validate the model, modeled available pool sizes were compared to measured available pool sizes.
Available P data were from the ISRIC Africa Soil Profiles Database. This consists of 17,160 georeferenced soil
profiles from across the continent mostly collected between 1950 and 2000. Inevitably for a repository of such
geographically and temporally spread, data are collected using a range of methods so where possible these
results have been standardized by the original authors. Additionally, for each country data were not col-
lected from a single site, rather multiple different locations, which changed through time (Leenaars,
2013). As such we calculated a mean available P concentration for each country for each year and use this
to compare to the modeled data.

The model was validated using four statistical techniques for the 2051 to 2010 period. Student's t test was
used to compare the similarity of measured data to themodeled data in terms of mean values over the period.
In addition, a lack of fit test (Whitemore, 1991), root‐mean‐square error (RMSE), and Wilmot's index of
agreement (Willmott et al., 2012) were all analyzed. All analysis was conducted in R using the basic func-
tions and the additional packages of alr3 and HydroGOF for lack of fit and index of agreement, respectively.

2.5. Sensitivity Analysis

Sensitivity analyses were performed over a time period of 150 years (1900–2050) with results aggregated for
the whole SSA region. Sensitivity analyses were performed using the same approach as Mogollón et al.
(2018) according to the SSP2 scenario, which represents the current trajectory (i.e., using current baseline
technical agricultural trends for agricultural yields). The sensitivity of DPPS and GDPPS for variation within
a range using a uniform distribution for all parameters shown in the table below is analyzed using Latin
Hypercube sampling based on 150 runs (Table 2). The sensitivity is expressed by the Standardized
Regression Coefficient (SRC), which assume values between −1 and +1. The sign of SRC indicates the

Table 1
Study Countries Defined by Soil Type and Mean P Budget (Inputs‐Outputs) for the
1970 to 2006 Period

Soil type Alfisol Oxisol Ultisol Vertisol

Country (High P) Burkina Faso Angola Cameroon Somalia
P budget 2 kg/ha 1 kg/ha 1 kg/ha 10 kg/ha
Country (low P) Nigeria Mozambique D.R. Congo Sudan
P budget −1 kg/ha −1 kg/ha 0 kg/ha 1 kg/ha

Note. P budget is the mean difference between P inputs and P uptake for the
1970–2006 period (data from IMAGE; Bouwman et al., 2006).

Table 2
Model Parameters Included in the Sensitivity Analysis, Their Symbol and Description, and the Minimum andMaximumValue Considered for the Sampling Procedure

Parameter Min Max Explanation

fr_fertilizer_to_uptake 0.1 0.3 Fraction of fertilizer that is directly available for uptake (default 0.2).
fr_manure_to_uptake 0.05 0.15 Fraction of manure that is directly available for uptake (default 0.1).
default_max_uptake 400 600 Maximum uptake used in the Michaelis‐Menten equation (default 500 kgP/ha).
LP_file_factor 0.75 1.25 Multiplier to change the initial LP size in 1900 and for new soils.
Pcontent_file_factor 0.75 1.25 Multiplier to change the total P in the soils in 1900 and for new soils.
init_recovery_file_factor 0.75 1.25 Multiplier to change the initial recovery for each grid cell.
uptake_factor 0.75 1.25 Multiplier to change the demanded uptake (only used after the year 2005).
manure_factor 0.75 1.25 Multiplier to change the amount of manure.
fr_mobile_min_scen_sensi 0.0125 0.0375 The minimum fraction of available P in the LP pool is increased between 2006 and 2016.
fr_mobile_multiplier_factor 0.75 1.25 Multiplier to change the fraction of available P in the LP pool.
oxFeAl_file_factor 0.90 1.10 Multiplier to change the oxalate‐extractable Fe and Al oxide concentrations for each grid cell.
vdz_k_file_factor 0.90 1.10 Multiplier to change the vdZ‐vR activity constant for each grid cell.
deposition_file_factor 0.90 1.10 Multiplier to change the amount of deposition.
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direction of change due to variation of the parameter considered. A positive value indicates that a larger
parameter value results in a larger output. Outputs considered are Fertilizer application, LP and SP.

3. Results and Discussion
3.1. Model Validation

Previous continental scale studies using DPPS have not validated the modeled soil results against measured
soil data due to the hitherto lack of available data (Sattari et al., 2012; Zhang et al., 2017). As such this valida-
tion marks an important step forward in assessing the quality of DPPS for soil modeling and not merely soil
resource modeling. The size of the modeled available pool varied between locations ranging from 0.6 to
63 kg · ha−1 with a mean of 14 ± 11 kg · ha−1 for all countries throughout the 1950 to 2010 period. These

Figure 2. Labile pool and available P pool as modeled by dynamic phosphorus pool simulator (DPPS) and geochemical
DPPS (GDPPS) sizes with mean measured available P pool results as points (kg · ha−1). High and low refer to the rela-
tive P inputs in each country. For complete data of measured vs modeled available P refer to the supporting information.
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values are comparable to the measured data, which have a max of 57 kg/ha and a mean of 17 ± 11 kg · ha−1

(Figure 2). The results of Student's t test indicate that for 9 out 11 (82%) countries for DPPS and 6 out of
11(55%) for GDPPS, the modeled available P had no significant differences between measured and
modeled data with p values ranging <0.01 to no significant difference 0.91 for both DPPS and GDPPS
(Table 3).

The results of the lack of fit test indicate that for all but one of the countries (Nigeria) p > 0.05, this means
that the null hypothesis can be rejected and we suggest that there is no lack of fit (i.e., the relationship is
assumed to be reasonable). There was no great difference between the models in the lack of fit test.
Arguably, the greatest differences between the models occurred in the RMSE. RMSE ranged from 0.91 in
Sudan for GDPPS to 10.5 in Cameroon for GDPPS; however, in Cote d' Ivoire, Somalia, and D.R. Congo large
differences occurred between the models (Table 3). In these three countries the RMSE is substantially lower
for GDPPS than DPPS, indicating that GDPPS follows the measured data more closely. Finally, there was no
major difference between the models for the Index of Agreement. The values ranged from quite low with a
minimum of 0.23 in GDPPS in Mozambique to moderate 0.61 at both Cote d'Ivoire (DPPS) and Nigeria
(GDPPS). The differences between the models were mostly restricted to <0.05 (Table 3).

Table 3
Summary of Validation Statistics Comparing Measured and Modeled Available P for the Year 1950 to 2010

Country Soil type

Measured
available
P (μ ± σ;
kg/ha)

p value Root‐mean‐square error Index of agreement (d) Lack of fit (p)

DPPS GDPPS DPPS GDPPS DPPS GDPPS DPPS GDPPS

Burkina Faso Alfisol 9.1 ± 8.3 0.18 0.20 1.41 1.51 0.28 0.27 0.33 0.37
Nigeria 14 ± 7.5 0.22 0.07 4.07 4.51 0.59 0.61 0.03 0.04
Angola Oxisol N/A NA NA N/A N/A N/A N/A N/A N/A
Mozambique 21 ± 16 0.60 0.63 1.96 2.15 0.25 0.23 TFR TFR
Cameroon Ultisol 15 ± 9.5 <0.01 <0.01 9.88 10.5 0.41 0.41 0.19 0.18
D.R. Congo 27 ± 13 0.11 0.04 2.54 1.49 N.C. N.C. TFR TFR
Somalia Vertisol 14 ± 8.7 0.05 0.01 4.27 1.33 0.3 0.45 0.75 0.2
Sudan 15 ± 6.0 0.08 0.08 0.94 0.91 0.5 0.49 TFR TFR
Côte d'Ivoire Other (Alfisol & Utisol) 15 ± 9.2 0.1 0.04 7.05 2.89 0.61 0.51 0.79 0.86
Ethiopia Mixed (inc. Vertisol). 17 ± 9.9 <0.01 <0.01 1.64 1.8 0.41 0.4 0.11 0.11
Kenya Mixed (inc. Vertisol). 27 ± 15 0.91 0.60 2.7 2.79 0.32 0.38 0.54 0.65
Tanzania Mixed (inc. Oxisol). 15 ± 6.8 0.05 0.07 2.13 2.2 N.C. N.C. 0.44 0.34

Note. N/A, not applicable (no measured data); NC, not calculable; TFR, too few replicates (to calculate lack of fit). For complete data refer to the supporting
information.

Table 4
Comparison of Dynamic Phosphorus Pool Simulator (DPPS) and Geochemical DPPS (GDPPS) Results 2006–2050 for Soil P and P Inputs Assuming That Food
Production is Sufficient for Population Growth

Country Soil type

Cumulative P inputs 2006 to 2050 (kg · ha−1)a 2006 labile pool size (kg · ha−1) 2050 labile pool size (kg · ha−1)

DPPS GDPPS Ratiob DPPS GDPPS Ratiob DPPS GDPPS Ratio b

Burkina Faso Alfisol 447 398 0.89 238 250 1.05 278 334 1.20
Nigeria 407 395 0.97 213 222 1.04 265 293 1.11
Angola Oxisol 52.8 61.9 1.17 171 181 1.06 165 168 1.02
Mozambique 68.3 70.6 1.03 185 193 1.04 179 195 1.09
Cameroon Ultisol 345 329 0.95 183 206 1.12 187 214 1.15
D.R. Congo 259 296 1.14 97.2 110 1.13 109 125 1.15
Somalia Vertisol 1620 909 0.56 359 422 1.18 542 654 1.21
Sudan 289 268 0.93 193 199 1.03 223 264 1.18
Côte d'Ivoire Other (Alfisol & Utisol) 421 386 0.91 145 145 1.00 205 219 1.07
Ethiopia Mixed (inc. Vertisol). 303 287 0.95 445 510 1.15 437 522 1.19
Kenya Mixed (inc. Vertisol). 624 545 0.87 252 283 1.12 324 392 1.21
Tanzania Mixed (inc. Oxisol). 101 102 1.01 209 213 1.02 190 201 1.06

Note. N/A, not applicable (no measured data).
aCumulative P is the total amount of P required to 2050 (kg) divided by the 2007 area of croplands (ha). bRatio indicates the value for GDPPS/DPPS.
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Overall these tests indicate that both models provide moderately
good representation of the measured soil data; however, neither
model is substantially better than the other. The t test suggests that
DPPS produces the nearest concentrations to measured values, but
the RMSE indicates that GDPPS may follow the trends of data better.
These conclusions are hampered by the limitations of the measured
data over such a long period—as discussed in section 2.4.

3.2. Variations Between Models in Labile Pool Size

For the 1970 to 2006 period a small (mean ± SD of 7.0 ± 7.1 kg · ha−1)
but significant difference (p < 0.05 for each country) between DPPS‐
labile pool size and GDPPS‐labile pool size was calculated. The differ-
ence ranged from the lowest mean difference of 3.02 kg · ha−1 in
Tanzania to the highest of 25.4 kg · ha−1 in Somalia. In all cases,
GDPPS predicted a higher labile pool size than the DPPS (Figure 2).
For the 2006 to 2050 period the difference between GDPPS and
DPPS was even greater with the mean difference across all countries
being 19.1 ± 16.1 kg · ha−1 (μ± σ). This ranged from the lowest differ-

ence of 6.4 kg · ha−1 in Angola to the highest in Somalia 50.1 kg · ha−1 in Somalia (Figure 2). This means that
the difference between the labile pool size calculated by GDPPS and DPPS was significantly higher for the
2007–2050 period than the 1970–2006 period (p < 0.01), indicating that as time progresses the models
diverged more (Figure 2).

This divergence was highlighted in analysis of the labile pool for both models for the years 2006 and 2050
(Table 4 and supporting information). In 2006, the ratio of GDPPS to DPPS labile pool size ranged 1.00 in
Côte d'Ivoire 1.18 in Somalia and had a mean of 1.08 for all studied countries. By 2050 this ratio ranged from
1.02 in Angola to 1.21 in Somalia and a mean of 1.14 (Table 4 and supporting information).

Thus, this shows that the labile pool size predicted by GDPPS is significantly larger than that calculated by
DPPS for all countries and at most times with the difference increasing through time. For example, the mean
labile pool GDPPS to DPPS ratio in 2006 was 1.07 ± 0.06 compared to 1.13 ± 0.07 in 2050 (p= 0.03). Vertisols
(with prevailing coverages in Somalia, Sudan, Ethiopia, and Kenya) have the greatest discrepancy between
GDPPS and DPPS with a mean ratio 1.19 ± 0.01 by 2050 compared to 1.11 ± 0.07 for non‐Vertisols (p< 0.01).

Figure 3. Comparison between dynamic phosphorus pool simulator (DPPS) and
geochemical DPPS (GDPPS) of the predicted cumulative P inputs from 2006 to
2050 (Table 4).

Table 5
Standardized Regression Coefficients (SRC) Representing the Relative Sensitivity of Fertilizer Use, LP, and SP Representing Aggregated Model Results for the Whole
Region to Variation in 13 Parameters

Parameter

DPPS GDPPS

Fertilizer LP SP Fertilizer LP SP

fr_fertilizer_to_uptake −0.61 −0.29 −0.08 −0.31 −0.28 −0.01

fr_manure_to_uptake
default_max_uptake

LP_file_factor 0.94 −0.09 0.06 0.76 −0.10

Pcontent_file_factor −0.04 0.97 1.00

init_recovery_file_factor −0.14 −0.07 −0.02 −0.18 −0.14 −0.01

uptake_factor 0.54 0.06 0.75 −0.10 0.00

manure_factor −0.08 0.07 0.04 −0.20 0.23 0.01

fr_mobile_min_scen_sensi −0.16 −0.09 −0.02 −0.28 −0.20 −0.01

fr_mobile_multiplier_factor −0.45 −0.26 −0.10 −0.37 −0.45 −0.02

oxFeAl_file_factor 0.04 −0.04 0.01
vdz_k_file_factor 0.05 0.01
deposition_file_factor

Note. Boxes with numbers are significant, empty boxes indicate not significant SRC. Colored boxes indicate the most important parameters (green is negative;
salmon is positive).
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These differences also occurred in the cumulative amount of total P inputs and fertilizer P inputs required to
meet the target crop production to 2050 (Table 4, Figure 3, and supporting information). The ratio of total
cumulative P inputs of GDPPS to that of DPPS for the period 2006 to 2050 ranged from 0.56 in Somalia to
1.17 in Angola with a mean of 0.95. The ratio of fertilizer P ranged from 0.28 in Somalia to 1.47 in Angola
with a mean of 0.28 (Table 4, Figure 3, and supporting information). Again, there is a large discrepancy
between mean Vertisol and non‐Vertisol ratios, 0.83 ± 0.18 compared to 1.00 ± 0.10, but this difference is
not significant (p = 0.13).

3.3. Sensitivity Analysis

For 2050 the sensitivity for both models are given with respect to the calculated fertilizer in 2050, the size of
the LP and the SP pools. Only significant SRC values are shown (Table 5).
3.3.1. Sensitivity of Modeled Fertilizer Use
For understanding the sensitivity of both models, it is important to note that LP DPPS is smaller than LP
GDPPS and that the ft_mobile is larger in DPPS and in GDPPS. The combined effect (soil part going to fer-
tilizer) of these differences in LP size and fr_mobile and LP leads to a larger supply from LP in GDPPS than in
DPPS, and therefore a smaller fertilizer input in GDPPS than in DPPS. Probably, this causes the higher sen-
sitivity of GDPPS to manure inputs (manure_factor), because the transfer of P from LP to SP is slower than
in DPPS.

Both models show a negative SRC for the fraction of fertilizer directly going to uptake. The GDPPS model is
less sensitive for fr_fertilizer_to_uptake than the DPPS because the supply from LP to uptake is larger, less
fertilizer input is needed GDPPS. This is also the case for the parameter uptake_factor, with high SRC values
for both models. In GDPPS the SRC is larger than in DPPS, because fertilizer inputs are less in GDPPS and
the relative increase in fertilizer inputs is higher than in DPPS.
3.3.2. Sensitivity of Modeled LP and SP
Both models have comparable sensitivity of the LP size to all parameters. An increase in fr_fertilizer_to_up-
take leads to less input in LP and a lower LP size. Also, a higher fr_mobile_multiplier_factor leads to a higher
fraction available P for uptake, which results in a lower LP size. The initial LP size is changed with
LP_file_factor. Even in 2050 this initial setting of the pool sizes (Yang et al., 2013) is still contributing
strongly. For GDPPS also the minimum fraction mobile (fr_mobile_min_scen_sensi) is important due to
the lower fraction mobile in GDPPS. The manure_factor (amount of manure) has more influence on the
LP size in the GDPPS than in DPPS. GDPPS needs lower inputs to provide the demanded uptake than
DPPS, explaining the smaller SRC for GDPPS. The uptake_factor is not an important for LP, but the sign
of the SRC is different (positive for DPPS and negative for GDPPS). For GDPPS, a higher uptake leads to
uptake from the LP pool (mining), while the DPPS builds up LP in that same situation (small effect). The
fr_mobile_min_scen_sensi is important in GDPPS because fr_mobile for GDPPS is smaller than for DDPS
for LP and fertilizer. The values of fr_mobile_multiplier_factor are comparable for both models for LP and
fertilizer. GDPPS is not sensitive to vdz_k_file_factor and oxFeAl_file_factor. For SP both models are both
strongly sensitive to the initial total P in the soil from Yang et al. (2013).

4. Conclusions

We have provided evidence that the effect of spatial heterogeneity of indigenous soil properties can be
assessed using a new soil‐P model (GDPPS). Both GDPPS and DPPS have been validated against measured
available soil P for the first time; however, they provide systematically different results for both predictions
of P required to sustain food security and the soil P pool sizes. Across all the SSA countries the differences
between the models are most obvious in countries dominated by Vertisol soils. This is highlighted in
Somalia where the total P required to 2050 predicted by GDPPS is 56% of the total P input resulting from
DPPS. This is caused by large differences in the predicted labile pool. In GDPPS the phosphorus transfer
between the labile and stable pool is controlled by the soil chemical pedo‐transfer function developed in this
paper, which general leads to a larger labile pool and more available phosphorus than DPPS. The distinction
of regional differences due to the pedo‐transfer function within GDPPS is a powerful tool as soil chemistry
distributions are nowadays readily available in both national and international soil databases (e.g., Hengl
et al., 2017; Romero et al., 2012).
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