58 research outputs found

    Effect of agricultural by-product diets on carcass characteristics of four types of cattle in the feedlot

    Get PDF
    Five type of formulated diet from agricultural by-products (ABP) were fed to four breedtype of cattle in feedlot. The ABP used are palm kernel cake (PKC), palm press fibre (PPF), palm oil mill effluent (POME), cocoa pod (COP), coffee pulp (COF) and pineapple waste (PAP). The formulated diets are PS (52% PKC, 15% PPF and 30% POME), PF (57% PKC, 20% PPF and 20% POME), PA (2% PKC and 55% PAP), CO (42% PKC and 55% COP) and CF (67% PKC and 30% COF) with 1% urea, 1% NaCl and 1% vitamins premix. The cattle breedtypes are Kedah-Kelantan (KK), Brahman-KK (BK), Hereford-KK (HK) and Sahiwal-Friesian (SF). The result showed that breedtype significantly affect all the carcass characteristic except dressing percentage. Each breedtype has it`s specific carcass characteristics. HK cattle gave high marbling, BK has high % of carcass bone, KK has high % of carcass meat and low % of carcass fat (lean meat type) and SF has high % of carcass fat. Diet-type significantly affect the deposition of fat in the carcass. High moisture diets (PA and CO) produced significantly higher % carcass bone, the lowest % carcass fat and the highest % carcass meat (65.3%). PF, CF, PA and CO diets produced 63.4%, 59.9%, 55.3% and 54.1% carcass meat respectively

    Study of factors influencing construction delays at rural area in Malaysia

    Get PDF
    Construction is one of an important industry which contributes to the economic growth in Malaysia. However, it has been revealed that 79.5 percent and 66.7 percent of the public and private projects were not completed within the time specified in the contracts out of 359 projects in Malaysia. Therefore, the purpose of this study is to investigate the delay factor caused project delay at rural area. A 5-points Likert scale questionnaire survey were answered by 111 respondents which having experience with rural construction project. The questionnaire data were analysed by using Relative Importance Index (RII). Five top factors were determined from this study based on their RII values which are improper construction method implemented by contractor, weather condition, difficulties in providing delivery to site, breakdown of site equipment, and poor qualification of contractor’s technical staffs

    Kinetic Models of Trymethylolpropane (TMP) and Castor Oil Methyl Ester Transesterification for engine oil synthesis

    Get PDF
    Non-digestible oil as renewable resources has grown a compulsive concern for engine oil synthesis. The synthesis of engine oil was conducted in a bath stirrer flask via two-steps catalytic transesterification. Modification of trimethylolpropane (TMP) and castor oil methyl ester (COME) transesterification was run under non- and impregnated Perna V. shells catalysts. Operation temperature effect on the castor trimethylol propane triester as engine lubricant was conditioned at range 90°C – 130°C. The optimal reaction temperature was detected at 110°C with 98.60 % TMP conversion and 71.29% triester composition. Excess dosage of COME was structured at 4:1 ratio to TMP for progressive reaction limitation. Kinetics of TMP and COME transesterifation were established for first- and second orders. The second order kinetic model best matchs the acquired data for an overall reaction rate constants of 0.0354 (% wt/wt min °C)-1. Synthesized engine oil resulted activation energy of 74.10 kJ/mol. Estimated pour and flash point were -17 °C and 221°C. Kinematic viscosity at 40°C was 64.31 mm2/s and density was 872 kg/m3 fulfilled the proposed lubricant standard. The kinetic models were proportionate to other oil seeds crops based engine oil, typically Jatropha seeds oil

    Preparation method of titanium dioxide nanoparticles and its application: an update

    Get PDF
    Titanium dioxide (TiO2) is widely used because of its good biocompatibility and stability. Various methods were used to prepare TiO2 by using chemical, biological, and physical methods. In this paper, the currents methods to prepare TiO2 were evaluated either with or without using plant extract. The average particle size produced for different methods of technique and its application was also analyzed. Chemical methods use toxic chemical while physical methods such as gamma produce high energy and using biological method with plant extract is more environmentally friendly. This review gives an up-to-date summary of TiO2 produced using various synthesis methods with the focus on their particle sizes properties. Recent publications on this topic were extracted from related journals obtained from Science Direct online database from the year 2010 to 2021. Preparation methods, average particles sizes, and the applications of the synthesized TiO2 were evaluated and further discussed in this review. It was found that TiO2 of smaller particle sizes were obtained when synthesized without using plant extract. Furthermore, many researchers tend to combine TiO2 with other materials or composites to be mixed with polymers for various purposes of application especially wastewater treatment application

    A phylogenetic classification of the world’s tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests

    Phylogenetic classification of the world\u27s tropical forests

    Get PDF

    Tree species that 'live slow, die older' enhance tropical peat swamp restoration : Evidence from a systematic review

    Get PDF
    Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study-sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half-life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half-life was 33 months across all species, sites and treatments. Species differed significantly in survival and half-life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half-life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half-life and RGR. RGR and half-life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.Peer reviewe

    Tree species that 'live slow, die older' enhance tropical peat swamp restoration : Evidence from a systematic review

    Get PDF
    Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study-sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half-life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half-life was 33 months across all species, sites and treatments. Species differed significantly in survival and half-life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half-life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half-life and RGR. RGR and half-life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.Peer reviewe

    Genomic insights into rapid speciation within the world’s largest tree genus Syzygium

    Get PDF
    Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification

    Genomic insights into rapid speciation within the world's largest tree genus Syzygium

    Get PDF
    Acknowledgements Y.W.L. was supported by a postgraduate scholarship research grant from the Ministry of National Development, Singapore awarded through the National Parks Board, Singapore (NParks; NParks’ Garden City Fund). Principal research funding from NParks and the School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, is acknowledged. We thank Peter Preiser, Associate Vice President for Biomedical and Life Sciences, for facilitating NTU support, and Kenneth Er, CEO of NParks, for facilitating research funding through that organisation. V.A.A. and C.L. were funded by SBS, NTU for a one-year research leave. V.A.A. and C.L. also acknowledge support from the United States National Science Foundation (grants 2030871 and 1854550, respectively). S.R. was supported by a postdoctoral research fellowship under the NTU Strategic Plant Programme. S.R. and N.R.W.C. acknowledge funding from NTU start-up and the Academy of Finland (decisions 318288, 319947) grants to J.S. Fieldwork conducted by Y.W.L. was supported by an Indonesian Government RISTEK research permit (Application ID: 1517217008) and an Access License from the Sabah State government [JKM/MBS.1000-2/2JLD.7(84)]. T.N.C.V. is grateful to the Assemblée de la Province Nord and Assemblée de la Province Sud (New Caledonia) for facilitating relevant collection permits. A.N. was partly supported by the Research Project Promotion Grant (Strategic Research Grant No. 17SP01302) from the University of the Ryukyus, and partly by the Environment Research and Technology Development Fund (JPMEERF20204003) from the Environmental Restoration and Conservation Agency of Japan. Fieldwork in Fiji conducted by R.B. was hosted and facilitated by Elina Nabubuniyaka-Young (The Pacific Community’s Centre for Pacific Crops and Trees, Fiji). We thank the NTU-Smithsonian Partnership for tree data obtained for the Bukit Timah Nature Reserve (BTNR) long-term forest dynamics plots. Administrative support provided by Mui Hwang Khoo-Woon and Peter Ang at the molecular laboratory of the Singapore Botanic Gardens (SBG) is acknowledged. Rosie Woods and Imalka Kahandawala (DNA and Tissue Bank, Royal Botanic Gardens, Kew) facilitated additional DNA samples. Daniel Thomas (SBG) and Yan Yu (Sichuan University) commented on biogeographical analyses. NovogeneAIT in Singapore is acknowledged for personalised sequencing service.Peer reviewedPublisher PD
    corecore