574 research outputs found

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Prediction of Preterm Deliveries from EHG Signals Using Machine Learning

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. In extreme cases, this can also lead to long-term conditions, such as cerebral palsy, mental retardation, learning difficulties, including poor health and growth. In the US alone, the societal and economic cost of preterm births, in 2005, was estimated to be $26.2 billion, per annum. In the UK, this value was close to £2.95 billion, in 2009. Many believe that a better understanding of why preterm births occur, and a strategic focus on prevention, will help to improve the health of children and reduce healthcare costs. At present, most methods of preterm birth prediction are subjective. However, a strong body of evidence suggests the analysis of uterine electrical signals (Electrohysterography), could provide a viable way of diagnosing true labour and predict preterm deliveries. Most Electrohysterography studies focus on true labour detection during the final seven days, before labour. The challenge is to utilise Electrohysterography techniques to predict preterm delivery earlier in the pregnancy. This paper explores this idea further and presents a supervised machine learning approach that classifies term and preterm records, using an open source dataset containing 300 records (38 preterm and 262 term). The synthetic minority oversampling technique is used to oversample the minority preterm class, and cross validation techniques, are used to evaluate the dataset against other similar studies. Our approach shows an improvement on existing studies with 96% sensitivity, 90% specificity, and a 95% area under the curve value with 8% global error using the polynomial classifier

    Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode

    Full text link
    The conduction velocity and propagation patterns of Electrohysterogram (EHG) provide fundamental information about uterine electrophysiological condition. The accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations the aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare it with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences among channels in either duration or dominant frequency in the Fast Wave High frequency range were found. Nonetheless, the high pass filtering effect of the BC-EHG records resulted in lower frequency content within the range 0.1 to 0.2 Hz than the bipolar ones. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing uterine electrophysiological condition.The authors are grateful to the Obstetrics Unit of the Hospital Universitario La Fe de Valencia (Valencia, Spain), where the recording sessions were carried out. The work was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945), by the Universitat Politecnica de Valencia (PAID SP20120490) and Generalitat Valenciana (GV/2014/029) and by General Electric Healthcare.Ye Lin, Y.; Alberola Rubio, J.; Prats Boluda, G.; Perales Marin, AJ.; Desantes, D.; Garcia Casado, FJ. (2015). Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode. Annals of Biomedical Engineering. 43(4):968-976. https://doi.org/10.1007/s10439-014-1130-5S968976434Alberola-Rubio, J., G. Prats-Boluda, Y. Ye-Lin, J. Valero, A. Perales, and J. Garcia-Casado. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med. Eng. Phys. 35(12):1736–1743, 2013.Besio, W. G., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric ring electrode development for laplacian electroencephalography. IEEE Trans. Biomed. Eng. 53(5):926–933, 2006.Devasahayam, S. R. Signals and Systems in Biomedical Engineering. Berlin: Springer, 2013.Devedeux, D., C. Marque, S. Mansour, G. Germain, and J. Duchene. Uterine electromyography: a critical review. Am. J. Obstet. Gynecol. 169(6):1636–1653, 1993.Estrada, L., A. Torres, J. Garcia-Casado, G. Prats-Boluda, and R. Jane. Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii. Conf. Proc. IEEE Eng Med. Biol. Soc. 2013:535–538, 2013.Euliano, T. Y., D. Marossero, M. T. Nguyen, N. R. Euliano, J. Principe, and R. K. Edwards. Spatiotemporal electrohysterography patterns in normal and arrested labor. Am. J. Obstet. Gynecol. 200(1):54–57, 2009.Farina, D., and C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans. Biomed. Eng. 48(11):1326–1334, 2001.Fele-Zorz, G., G. Kavsek, Z. Novak-Antolic, and F. Jager. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng Comput. 46(9):911–922, 2008.Garfield, R. E., and W. L. Maner. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 18(3):289–295, 2007.Garfield, R. E., W. L. Maner, L. B. Mackay, D. Schlembach, and G. R. Saade. Comparing uterine electromyography activity of antepartum patients vs. term labor patients. Am. J. Obstet. Gynecol. 193(1):23–29, 2005.Garfield, R. E., H. Maul, L. Shi, W. Maner, C. Fittkow, G. Olsen, and G. R. Saade. Methods and devices for the management of term and preterm labor. Ann. N. Y. Acad. Sci. 943(1):203–224, 2001.Hassan, M., J. Terrien, C. Muszynski, A. Alexandersson, C. Marque, and B. Karlsson. Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans. Biomed. Eng. 60(4):1160–1166, 2013.Kaufer, M., L. Rasquinha, and P. Tarjan. Optimization of multi-ring sensing electrode set, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 1990, pp. 612–613.Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.Lu, C.-C., and P. P. Tarjan. Pasteless, active, concentric ring sensors for directly obtained laplacian cardiac electrograms. J. Med. Biol. Eng. 22(4):199–203, 2002.Lucovnik, M., W. L. Maner, L. R. Chambliss, R. Blumrick, J. Balducci, Z. Novak-Antolic, and R. E. Garfield. Noninvasive uterine electromyography for prediction of preterm delivery. Am. J. Obstet. Gynecol. 204(3):228.e1–228.e10, 2011.Maner, W. L., and R. E. Garfield. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann. Biomed. Eng. 35(3):465–473, 2007.Maner, W. L., R. E. Garfield, H. Maul, G. Olson, and G. Saade. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet. Gynecol. 101(6):1254–1260, 2003.Marque, C., J. M. Duchene, S. Leclercq, G. S. Panczer, and J. Chaumont. Uterine EHG processing for obstetrical monitoring. IEEE Trans. Biomed. Eng. 33(12):1182–1187, 1986.Marque, C. K., J. Terrien, S. Rihana, and G. Germain. Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC. Pregnancy Childbirth. 7(Suppl1):S5, 2007.Maul, H., W. L. Maner, G. Olson, G. R. Saade, and R. E. Garfield. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal Med. 15(5):297–301, 2004.Miles, A. M., M. Monga, and K. S. Richeson. Correlation of external and internal monitoring of uterine activity in a cohort of term patients. Am. J. Perinatol. 18(3):137–140, 2001.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2010.Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijo, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Meas. Sci. Technol. 23(12):1–10, 2012.Rabotti, C., M. Mischi, S. G. Oei, and J. W. Bergmans. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans. Biomed. Eng. 57(9):2178–2187, 2010.Rabotti, C., S. G. Oei, H. J. van ‘t, and M. Mischi. Electrohysterographic propagation velocity for preterm delivery prediction. Am. J. Obstet. Gynecol. 205(6):e9–e10, 2011.Rooijakkers, M. J., S. Song, C. Rabotti, S. G. Oei, J. W. Bergmans, E. Cantatore, and M. Mischi. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput. Math. Methods Med. 2014(1):960980, 2014.Schlembach, D., W. L. Maner, R. E. Garfield, and H. Maul. Monitoring the progress of pregnancy and labor using electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl1):S33–S39, 2009.Sikora, J., A. Matonia, R. Czabanski, K. Horoba, J. Jezewski, and T. Kupka. Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch. Perinatal Med. 17(2):97–103, 2011.Terrien, J., C. Marque, and B. Karlsson. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 2007, pp. 1872–1875.Terrien, J., C. Marque, T. Steingrimsdottir, and B. Karlsson. Evaluation of adaptive filtering methods on a 16 electrode electrohysterogram recorded externally in labor, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, 2007, Vol. 16, pp. 135–138.U.S. Preventive Services Task Force. Guide to clinical preventive services: an assessment of the effectiveness of 169 interventions. Baltimore: Willams & Wilkins, 1989

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set

    Get PDF
    Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays
    corecore