128 research outputs found

    Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model

    Get PDF
    Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled 'Cognitive Enhancers'. © 2012 Elsevier Ltd. All rights reserved

    Increased anxiety-like behavior following circuit-specific catecholamine denervation in mice

    Get PDF
    Parkinson's disease (PD) presents with a constellation of non-motor symptoms, notably increased anxiety, which are currently poorly treated and underrepresented in animal models of the disease. Human post-mortem studies report loss of catecholaminergic neurons in the pre-symptomatic phases of PD when anxiety symptoms emerge, and a large literature from rodent and human studies indicate that catecholamines are important mediators of anxiety via their modulatory effects on limbic regions such as the amygdala. On the basis of these observations, we hypothesized that anxiety in PD could result from an early loss of catecholaminergic inputs to the amygdala and/or other limbic structures. To interrogate this hypothesis, we bilaterally injected the neurotoxin 6-OHDA in the mouse basolateral amygdala (BL). This produced a restricted pattern of catecholaminergic (tyrosine-hydroxylase-labeled) denervation in the BL, intercalated cell masses and ventral hippocampus, but not the central amygdala or prefrontal cortex. We found that this circuit-specific lesion did not compromise performance on multiple measures of motor function (home cage, accelerating rotarod, beam balance, pole climbing), but did increase anxiety-like behavior in the elevated plus-maze and light-dark exploration tests. Fear behavior in the pavlovian cued conditioning and passive avoidance assays was, by contrast, unaffected; possibly due to preservation of catecholamine innervation of the central amygdala from the periaqueductal gray. These data provide some of the first evidence implicating loss of catecholaminergic neurotransmission in midbrain-amygdala circuits to increased anxiety-like behavior. Our findings offer an initial step towards identifying the neural substrates for pre-motor anxiety symptoms in PD

    Identification of a novel gene regulating amygdala-mediated fear extinction.

    Get PDF
    Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders

    The endocannabinoid system in mental disorders: Evidence from human brain studies

    Get PDF
    Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders. Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CB1 receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)

    Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice

    Get PDF
    N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus–pituitary–adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.NWOMicrobial Biotechnolog

    Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    Get PDF
    Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets

    Investigation of in Vitro Opioid Receptor Binding Activities of Some Turkish Salvia Species

    Get PDF
    Kappa Opioid Peptide Receptor (KOPr) activation produces analgesic, psychotomimetic, diuretic and antipruritic effects. KOPr ligands are investigated for their potential roles in the treatment of addiction, depression, feeding behavior, psychosis and schizophrenia. In this study the methanolic extracts of a number of Salvia species which are native to Turkey (S. tomentosa, S. tchihatcheffii, S. rosifolia, S. dichroantha and S. sclarea) were tested for their potential binding to opioid receptors in rat brain membranes and Chinese Hamster Ovary Cells expressing human KOPr (CHO-KOPh). [(3)H] Diprenorphine, an unselective opioid antagonist, was utilized in the radioligand receptor binding assays. All extracts (0.11 mg/mL) inhibited the [(3)H] Diprenorphine binding with ranging KOPr binding affinities. More than 50% inhibition of diprenorphine binding was shown only with Salvia dichroantha and Salvia sclarea both in rat brain membranes and CHO-KOPh membranes. Among them Salvia sclarea deserves further investigation for its active component(s) and its pharmacological characterization. This study clearly demonstrates the potential opioid receptor binding activities of several Turkish Salvia species. This work constitutes the first study on in vitro opioid receptor binding activities of Salvia species from the Turkish flora

    Effects of a Peripherally Restricted Hybrid Inhibitor of CB1 Receptors and iNOS on Alcohol Drinking Behavior and Alcohol-Induced Endotoxemia

    No full text
    Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a “two-bottle” as well as a “drinking in the dark” paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia
    corecore