1,629 research outputs found

    Magnon mode selective spin transport in compensated ferrimagnets

    Full text link
    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a non-monotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semi-quantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal

    Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers

    Get PDF
    Objective: To devise and validate radiomic signatures of impending hematoma expansion (HE) based on admission non-contrast head computed tomography (CT) of patients with intracerebral hemorrhage (ICH). Methods: Utilizing a large multicentric clinical trial dataset of hypertensive patients with spontaneous supratentorial ICH, we developed signatures predictive of HE in a discovery cohort (n = 449) and confirmed their performance in an independent validation cohort (n = 448). In addition to n = 1,130 radiomic features, n = 6 clinical variables associated with HE, n = 8 previously defined visual markers of HE, the BAT score, and combinations thereof served as candidate variable sets for signatures. The area under the receiver operating characteristic curve (AUC) quantified signatures’ performance. Results: A signature combining select radiomic features and clinical variables attained the highest AUC (95% confidence interval) of 0.67 (0.61–0.72) and 0.64 (0.59–0.70) in the discovery and independent validation cohort, respectively, significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score (pdiscovery < 0.001, pvalidation < 0.001). Adding visual markers to radiomic features failed to improve prediction performance. All signatures were significantly (p < 0.001) correlated with functional outcome at 3-months, underlining their prognostic relevance. Conclusion: Radiomic features of ICH on admission non-contrast head CT can predict impending HE with stable generalizability; and combining radiomic with clinical predictors yielded the highest predictive value. By enabling selective anti-expansion treatment of patients at elevated risk of HE in future clinical trials, the proposed markers may increase therapeutic efficacy, and ultimately improve outcomes

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories

    Get PDF
    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in version 2

    Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure

    Get PDF
    We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h^{1,1}. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, an efficient numerical check is proposed for determining whether or not a vector bundle is slope-stable without computing its full connection.Comment: 38 pages, 10 figure

    Reggeon exchange from gauge/gravity duality

    Get PDF
    We perform the analysis of quark-antiquark Reggeon exchange in meson-meson scattering, in the framework of the gauge/gravity correspondence in a confining background. On the gauge theory side, Reggeon exchange is described as quark-antiquark exchange in the t channel between fast projectiles. The corresponding amplitude is represented in terms of Wilson loops running along the trajectories of the constituent quarks and antiquarks. The paths of the exchanged fermions are integrated over, while the "spectator" fermions are dealt with in an eikonal approximation. On the gravity side, we follow a previously proposed approach, and we evaluate the Wilson-loop expectation value by making use of gauge/gravity duality for a generic confining gauge theory. The amplitude is obtained in a saddle-point approximation through the determination near the confining horizon of a Euclidean "minimal surface with floating boundaries", i.e., by fixing the trajectories of the exchanged quark and antiquark by means of a minimisation procedure, which involves both area and length terms. After discussing, as a warm-up exercise, a simpler problem on a plane involving a soap film with floating boundaries, we solve the variational problem relevant to Reggeon exchange, in which the basic geometry is that of a helicoid. A compact expression for the Reggeon-exchange amplitude, including the effects of a small fermion mass, is then obtained through analytic continuation from Euclidean to Minkowski space-time. We find in particular a linear Regge trajectory, corresponding to a Regge-pole singularity supplemented by a logarithmic cut induced by the non-zero quark mass. The analytic continuation leads also to companion contributions, corresponding to the convolution of the same Reggeon-exchange amplitude with multiple elastic rescattering interactions between the colliding mesons.Comment: 60+1 pages, 14 figure

    Weinberg like sum rules revisited

    Get PDF
    The generalized Weinberg sum rules containing the difference of isovector vector and axial-vector spectral functions saturated by both finite and infinite number of narrow resonances are considered. We summarize the status of these sum rules and analyze their overall agreement with phenomenological Lagrangians, low-energy relations, parity doubling, hadron string models, and experimental data.Comment: 31 pages, noticed misprints are corrected, references are added, and other minor corrections are mad
    • 

    corecore