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1 Introduction

From the point of view of the microscopic theory, the problem of high-energy soft (i.e., at
small transverse momentum transfer) hadronic elastic amplitudes has yet remained essen-
tially unsolved. Indeed, it involves the non perturbative regime of the underlying Quantum
Chromodynamics field theory (QCD) at strong coupling, which, apart from lattice calcu-
lations, is beyond reach at the moment. However, some fundamental properties have been
known since a long time, coming from the S-matrix formalism, and they are expected to
hold for a consistent quantum field theory. They are Unitarity, coming from the conser-
vation of probabilities, and Analyticity. These properties, combined with the existence of
a “mass gap” in the asymptotic particle spectrum, lead to the celebrated Froissart bound
for the total cross section [1–3], which corresponds (up to logarithms) to an intercept not
greater than 1 for the leading Regge singularity, usually called the “Pomeron”. To be more
precise, in terms of the impact-parameter (~b) and rapidity (Y ) dependence of the partial
elastic amplitude a(Y,~b), unitarity gives a bound on Im a ≤ 2 (in standard units), while
confinement provides a bound on the impact-parameter radius L ∝ Y. Both ingredients
enter the derivation of the Froissart bound.

Recently, a new tool for dealing with soft amplitudes has appeared, namely the Ga-
uge/Gravity duality, whose precise realization has been first found [4–7] within the for-
malism of the AdS/CFT correspondence. Generally speaking, Gauge/Gravity duality
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is expected to relate a strongly coupled gauge field theory with a “weakly coupled” 5-
dimensional supergravity limit of a 10-dimensional string theory. This raises the hope to
find a solution by mapping high-energy amplitudes into supergravity by duality. In the re-
alization of the AdS/CFT correspondence, the gauge theory is the N = 4 supersymmetric
Yang-Mills (SYM) gauge theory, which is a conformal field theory and thus non-confining:
the result should then differ from what is found in a confining theory like QCD. However,
attacking the problem of soft amplitudes in this context may be a useful laboratory for
further developments in QCD. Indeed, the study of soft high-energy scattering amplitudes
in N = 4 SYM using the AdS/CFT correspondence, and more generally Gauge/Gravity
duality, has attracted much attention in the literature [8–25].

In the conformal case there is no mass gap, and thus the Froissart bound is not expected
to be valid for N = 4 SYM theory. However, unitarity and analyticity are still expected
to hold, and so it is interesting to examine the question of high-energy bounds in this
context. Indeed, in the perspective of applying the same tools to gauge theories more
similar to QCD, it is worthwhile to learn more from the precise “laboratory” furnished by
the AdS/CFT correspondence. For this sake we shall use together unitarity, analyticity
and the AdS/CFT correspondence to give a precise account of soft high-energy elastic
amplitudes in the N = 4 supersymmetric gauge theory.

The difficult problem one is faced with when using the AdS/CFT correspondence is
that it applies to the planar, large-Nc limit of the gauge theory. This planar approximation
corresponds to purely elastic contributions since there is no particle production, and so it
does not take into account the contribution of inelastic multiparticle channels, which are an
essential feature for determining soft high-energy amplitudes. However, the analytic con-
tinuation from Euclidean to Minkowskian space may generate inelasticity for the scattering
amplitude (see ref. [9, 10]).

Our guideline is to circumvent this difficulty by combining the knowledge one can
obtain from AdS/CFT in the region of applicability of the supergravity approximation,
i.e., the large impact-parameter region where the amplitude is essentially elastic, with the
constraints coming from analyticity and unitarity which are expected to hold for gauge
field theories.

To be specific we shall consider the following ingredients:

• The rôle of massive quarks and antiquarks (Q, Q̄) in the AdS/CFT correspondence
will be played, as in [26, 27], by the massive W bosons arising from breaking U(N +
1) → U(N) × U(1), where one brane is considered away from the N → ∞ others.
Hence, the role of hadrons will be devoted to “onia” defined as linear combinations
of QQ̄ colorless “dipole” states [28–31] of average transverse size 〈|~R|〉, which sets the
scale for the onium mass.

• The dipole amplitudes will be defined through correlators of Wilson loops in Eu-
clidean space, in order to avoid the complications of the Lorentzian AdS/CFT corre-
spondence (see e.g. [32]). Hence, we will start from the Euclidean formulation of the
problem, and then perform an analytic continuation [33–39] to obtain the physical
quantity in Minkowski space [40–44].
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• The AdS/CFT correspondence will allow to relate the calculation of the Euclidean
Wilson loop correlator to a minimal surface problem in the Anti de Sitter bulk, which
has been solved [8] at large impact-parameter distance L using the knowledge of
(quasi-)disconnected minimal surfaces, connected by supergravity fields propagating
in the bulk. This is the solution of the minimal surface problem beyond the Gross-
Ooguri transition point [45, 46].

• After analytic continuation, this result will lead to an estimate of cross sections and
elastic amplitudes at large impact parameter. Combined with unitarity and analyt-
icity to fix a bound in the lower impact-parameter domain, it will lead to a determi-
nation of new energy bounds on the forward elastic amplitudes, or, equivalently, on
the total cross sections in N = 4 SYM.

Note that we base our analysis on the use of minimal surface solutions in AdS space
with Euclidean signature [8–10]. More recently, the use of minimal surfaces in AdS space
with Minkowskian signature for two- and many-body gluon scattering has been developed
(see [47, 48] and references therein). In the present work we stick to the study of soft
scattering amplitudes for colorless states.

The plan of the paper is as follows. In section 2, we formulate the amplitudes in terms
of Wilson loop correlators in Euclidean space, where the AdS/CFT correspondence is ap-
plied, and we define properly the analytic continuation to the physical Minkowski space.
In section 3 we derive the formulation of the AdS/CFT minimal surface solution [8] for
the impact-parameter dependent amplitudes valid at large impact-parameter (extended to
unequal dipole sizes). In the following section 4, the impact-parameter domain for the ap-
plicability of the AdS/CFT correspondence is determined from the weak gravitational field
constraint in the AdS dual. Together with unitarity constraints it allows us, in section 5, to
determine an absolute bound on the high-energy behavior of total cross sections and thus
on the leading “Pomeron” intercept of the forward elastic amplitude. We briefly discuss
subleading contributions, among which the next-to-leading, parity-odd one corresponds to
the “Odderon” in N =4 SYM theory. In section 6, we summarize our main results, compare
them with existing studies and propose an outlook on future related studies.

2 Elastic amplitudes from Euclidean Wilson Loop correlators

In order to obtain information on high-energy elastic scattering amplitudes at strong cou-
pling, we will follow the approach of [8] to evaluate them through the Gauge/Gravity
correspondence, making use of minimal surfaces in the gravity bulk. The specific tool we
will use is the AdS/CFT correspondence, which allows to evaluate a certain Wilson-loop
correlation function in N = 4 SYM theory in Euclidean space through its gravitational
dual, together with analytic continuation into the physical Minkowski space, where this
correlator corresponds to a dipole-dipole elastic scattering amplitude. In this section we
briefly describe the Wilson loop formalism [40–44], and the analytic continuation required
to relate Euclidean and Minkowskian quantities [33–39].
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Figure 1. Geometry of the Wilson loops in Euclidean space. The transverse kinematic variables
(~b, ~R1,2) remain unchanged by the analytic continuation to Minkowski space, while θ → −iχ,
see text.

In the eikonal approximation, dipole-dipole elastic scattering amplitudes in the high
energy limit and at small momentum transfer (the so-called soft high-energy regime) can
be conveniently expressed in terms of the normalized connected correlator CM of Wilson
loops in Minkowski space [41–44]

A(s, t; ~R1, ~R2) = −2is
∫
d2~b ei~q·

~b CM (χ,~b; ~R1, ~R2)

≡ −2is
∫
d2~b ei~q·

~b

〈 W1W2

〈W1〉 〈W2〉 − 1
〉
,

(2.1)

where t = −~q 2, ~q being the transverse transferred momentum (here and in the following
we denote with ~v a two-dimensional vector), and the Wilson loops follow the classical
straight-line trajectories for quarks (antiquarks, in parenthesis) [49]:

W1 −→ Xµ = bµ + uµ1τ (+rµ1 ) W2 −→ X ′µ = uµ2τ (+rµ2 ) . (2.2)

Here uµ1,2 are unit time-like vectors along the directions of the momenta defining the
dipole classical trajectories, and moreover bµ = (0, 0,~b) and rµ1,2 = (0, 0, ~R1,2). The loop
contours are then closed at positive and negative infinite proper-time τ in order to en-
sure gauge-invariance.

The amplitude (2.1) corresponds to the scattering of colorless quark-antiquark pairs
with transverse separation Ri = |~Ri|. The scattering amplitude for two onium states can
then be reconstructed from the dipole-dipole amplitude after folding with the appropriate
wave-functions for the onia,

A(O)(s, t) =
∫
d2 ~R1 d

2 ~R2 |ψ1(~R1)|2|ψ2(~R2)|2A(s, t; ~R1, ~R2) . (2.3)
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The mass of an onium state with wave function ψ is expected to be of the order of the
inverse of its average radius, m ∼ [

∫
d2 ~R |ψ(~R)|2R]−1 ≡ 〈R〉−1.

The geometrical parameters of the configuration can be related to the energy scales by
the relation

coshχ ≡ 1√
1− v2

=
s

2m1m2
− m2

1 +m2
2

2m1m2
≡ ς − m2

1 +m2
2

2m1m2
, (2.4)

where χ = 1
2 log 1+v

1−v is the hyperbolic angle (rapidity) between the trajectories of the
dipoles, v is their relative velocity, Y = log ς the total rapidity and m1,2 the masses of
the onia.

The formulation of the Gauge/Gravity correspondence that we want to use relates the
Wilson loop correlator in formula (2.1) to the solution of a minimal surface problem in
the bulk of the dual 5-dimensional space. This rule has been applied for scattering am-
plitudes to various dual geometries [8–10]. The determination of the minimal surface in a
given gravity background is in general a difficult mathematical problem. However, there
are known situations where the minimal surfaces can be obtained analytically, in particu-
lar for the case of the AdS/CFT correspondence between the N = 4 SYM gauge theory
and the AdS5 geometry. In order to avoid the complications related to the Minkowskian
signature [32], it is convenient to exploit the Euclidean version of the correspondence, and
then to reconstruct the relevant correlation function CM from its Euclidean counterpart CE
by means of analytic continuation [33–37]. The Euclidean approach has already been em-
ployed in the study of high-energy soft scattering amplitudes by means of non perturbative
techniques [8–10, 50, 51], including numerical lattice calculations [52, 53].

The Euclidean normalized connected correlation function is defined as

CE(θ,~b; ~R1, ~R2) ≡ 〈W1W2〉
〈W1〉〈W2〉 − 1 , (2.5)

where Wi are now Euclidean Wilson loops evaluated along the straight-line paths W1 −→
Xµ = bµ + uµ1τ (+rµ1 ) and W2 −→ X ′µ = uµ2τ (+rµ2 ), closed at infinite proper time, see
figure 1. The variables b and ri are the same defined above in the Minkowskian case (we
take Euclidean time to be the first coordinate to keep the notation close to the Minkowskian
case, see (2.2)). Here u1 and u2 are unit vectors forming an angle θ in Euclidean space.

The physical correlation function CM in Minkowski space is obtained by means of the
analytic continuation [33–37]

θ −→ −iχ ∼
s→∞

−i log ς (2.6)

from the Euclidean correlator CE . To be more precise, the two quantities are related
through the analytic continuation relation

CM (χ,~b; ~R1, ~R2) = CE(−iχ,~b; ~R1, ~R2), χ ∈ R+ , (2.7)

where the analytic continuation of CE is performed starting from the interval θ ∈ (0, π) for
the Euclidean angle (the restriction to positive values of χ and to θ ∈ (0, π) does not imply
any loss of information, due to the symmetries of the two theories).

– 5 –
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Figure 2. Correlation function of Wilson loops from AdS/CFT. The correlation function is calcu-
lated through the exchange of bulk supergravity fields between minimal surfaces attached to each
individual Wilson loop. Here zimax are the depths of the surfaces in the 5th dimension of AdS. The
other kinematic notations are as in figure 1.

It is worth mentioning that combining the analytic-continuation relation (2.7) with the
symmetries of the Euclidean theory one can derive non-trivial crossing-symmetry relations
for the Minkowskian loop-loop correlator [38, 39],

CM (iπ − χ,~b; ~R1, ~R2) = CM (χ,~b; ~R1,−~R2) = CM (χ,~b;−~R1, ~R2), χ ∈ R+ . (2.8)

These relations allow to decompose the amplitudes in crossing-symmetric and crossing-
antisymmetric components as follows,

A(±)(s, t; ~R1, ~R2) = −i2s
∫
d2~b ei~q·

~b C(±)
M (χ,~b; ~R1, ~R2) ,

C(±)
M (χ,~b; ~R1, ~R2) ≡ 1

2

(
CM (χ,~b; ~R1, ~R2)± CM (iπ − χ,~b; ~R1, ~R2)

)
.

(2.9)

In the next section we will describe how the Wilson-loop correlator is related to minimal
surface solutions via the AdS/CFT correspondence. The result will be used to estimate
the high-energy elastic dipole-dipole scattering amplitude in N = 4 SYM gauge theory, in
the appropriate kinematic range where the planar (large-Nc) approximation is expected to
be valid.

3 Wilson loop correlators from AdS/CFT

Within the AdS/CFT correspondence, the correlators of Wilson loops in the gauge theory,
such as those of eq. (2.1), are related to a minimal surface in the bulk of AdS5 having
as boundaries the two Wilson loops, which corresponds to minimizing the Nambu-Goto
action. The analytic solution of a minimal surface problem in Euclidean space (the so-
called Plateau problem) is in general a highly nontrivial mathematical issue, and it is even
more so in a non flat metric such as AdS5. For our purpose, an analytic solution is required
in order to adequately perform the Euclidean-to-Minkowskian analytic continuation.

Our guiding line, following ref. [8], is that the solution simplifies provided the impact
parameter distance L ≡ |~b| � R1, R2. Indeed, when L . R1, R2 there exists a connected
minimal surface with the sum of the two loops as its disjoint boundary (see e.g. [54]),
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although its explicit expression is difficult to obtain. However, when L� R1, R2 the min-
imal surface has two independent, (quasi-)disconnected components: in order to calculate
the correlator one then exploits, as in ref. [55], the explicit solutions corresponding to the
two loops connected by the classical supergravity interaction, i.e., by the exchange (see
figure 2) between them of the lightest fields of the AdS5 supergravity, namely the graviton,
the anti-symmetric tensor and the dilaton, which are massless, and the tachyonic Kaluza-
Klein (KK) scalar mode. This is the case we consider here, using the large-L behavior
of the dipole-dipole impact-parameter amplitude evaluated in [8], with a generalization
to unequal dipole sizes. As we have already pointed out, we start from the Euclidean
formulation of the problem, and so we consider minimal surfaces in AdS5 with Euclidean
metric in order to obtain the Wilson-loop correlation function in N = 4 SYM theory in
Euclidean space.

Let us recall the main results of [8] and describe briefly how one determines the lead-
ing dependence on the impact parameter L and on the rapidity χ of the various phase
shifts (corresponding to the various exchanges of supergravity fields), together with the
dependence on the size of the dipoles. For L� R1, R2, and in the weak gravitational field
domain, the Euclidean normalized connected correlation function has the form

CE = exp

∑
ψ

δ̃ψ

− 1 ,

δ̃ψ ≡ 1
4π2α′2

4
∫
dτ1dτ2

dz1
z1x

dz2
z2x

δSNG
δψ

(τ1, z1) Gψ(X,X ′)
δSNG
δψ

(τ2, z2) ,

(3.1)

where SNG is the Nambu-Goto action, α′ = 1/
√

4πgsNc and gs is the string coupling. Here
δSNG
δψ is the coupling of the world-sheet minimal surfaces attached to the two Wilson loops

to the supergravity field ψ. Moreover, τi is the proper time on world-sheet i = (1, 2), and
z1,2 are the fifth coordinates of points X, X ′ in AdS5, namely

X = (uµ1τ1 + xµ1 + bµ, z1) , X ′ = (uµ2τ2 + xµ2 , z2) . (3.2)

For the relevant four-dimensional vectors we use the notation

uµ1 = (1, 0,~0), uµ2 = (cos θ,− sin θ,~0) ,

xµi = σi(zi)
rµi
Ri
, σi ∈ [0, Ri], i = 1, 2 ,

(3.3)

where σi(zi) is determined by inverting the solution of the minimal surface equation zi =
zi(σi). The derivatives zix ≡ ∂zi

∂σi
are given by [26, 27]

zix =
(
zimax

zi

)2
√

1−
(

zi
zimax

)4

, zimax = Ri
[Γ(1/4)]2

(2π)3/2
. (3.4)

In eq. (3.1), Gψ(X,X ′) is the Green function relevant to the exchange of field ψ, which
depends only on invariant bitensors and scalar functions [56] of the AdS invariant

u =
(z1 − z2)2 +

∑4
j=1(Xj −X ′j)2

2z1z2
. (3.5)
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By the change of coordinates v+ = τ2 sin θ, v− = τ1−τ2 cos θ, one allows [8] the dependence
on θ to drop from Gψ(X,X ′), so that it can be read off directly from the couplings. One is
then able to isolate the leading dependence on L and Ri by performing the rescaling ζi =
zi/zimax, with ζi ∈ [0, 1], and ρ± = v±/L: we obtain a factor L2/z1maxz2max in front of the
integrals, and we find the leading term in u to be L2/z1maxz2max times a function of the new
integration variables. Working out the Green functions and the couplings corresponding to
the exchange of the various supergravity fields, and performing the remaining integrals, it
is found that the leading dependence (the “leading” term in θ is understood as the leading
term in χ after analytic continuation, see below) on θ, L and Ri for the various terms
of (3.1) is the following:1

δ̃S = κS
1

sin θ

(
R1R2

L2

)
≡ aS

1
sin θ

(KK scalar) ;

δ̃D = κD
1

sin θ

(
R1R2

L2

)3

≡ aD
1

sin θ
(dilaton) ;

δ̃B = κB
cos θ
sin θ

(
R1R2

L2

)2

≡ aB
cos θ
sin θ

(antisymmetric tensor) ;

δ̃G = κG
(cos θ)2

sin θ

(
R1R2

L2

)3

≡ aG
(cos θ)2

sin θ
(graviton) ,

(3.6)

factorizing explicitly the angular dependence from the rest. In (3.6) we keep track of the
different dipole sizes. To be complete, the factors κψ for each supergravity field are given
by (see formulas (34,38,49,58) of [8])

κS =
gs

2Nc

10
π2

, κD =
gs

2Nc

3
16

[
Γ(1/4)

2π

]8

, κB = const · gs
2Nc

, (3.7)

where the last constant is yet to be determined, and for the graviton field

κG =
gs

2Nc

15
2

[
[Γ(1/4)]2

4π

]4

. (3.8)

The string coupling gs is related to the gauge theory coupling by g2
YM = 2πgs. Performing

now the analytic continuation θ → −iχ, leading to the phase shifts iδψ ≡ δ̃ψ(θ → −iχ),
one finally obtains for the Minkowskian correlation function

CM = exp

i∑
ψ

δψ

− 1 , (3.9)

where δψ are given by

δS = aS
1

sinhχ
, δD = aD

1
sinhχ

, δB = aB
coshχ
sinhχ

, δG = aG
(coshχ)2

sinhχ
. (3.10)

1The L-dependence of the dilaton contribution has been corrected with respect to the misprinted one

reported in [8].
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Since the functions aψ depend only on the combination L2

R1R2
of the moduli of the impact

parameter and of the dipole sizes Ri, we will sometimes write CM ≡ CM (χ,L;R1, R2).
We notice that under crossing, i.e., under χ → iπ − χ, the phases δS , δD and δG are
symmetric, while δB is antisymmetric. One has then for the definite-signature quantities
in (2.9) the expressions

C(+)
M = cos(δB) exp [i (δS + δD + δG)]− 1 ,

C(−)
M = i sin(δB) exp [i (δS + δD + δG)] .

(3.11)

4 AdS/CFT domain of validity

4.1 The weak field constraint

The range of validity of the calculations above is determined by requiring [8] that the effect
of the gravitational perturbation δGtt generated by each of the string world-sheets on the
other one is smaller than the background metric Gtt, therefore ensuring that one is actually
working in the weak-field limit. Considering the effect of world-sheet 2 on world-sheet 1
(see figure 2) the strongest constraint is obtained from the evaluation of the maximal
gravitational field produced at the point τ1 = 0, where the distance between the loops is
minimal. The weak gravitational field requirement reads

δGtt
Gtt

� 1, Gtt ≡ 1
z2
1

, (4.1)

where Gtt is the background metric term coming from the AdS5 Fefferman-Graham pa-
rameterization. In order to find the explicit expression of condition (4.1), we note that
the phase shift in (3.1) can be also interpreted as an integral over the string world-sheet
1 (at θ = 0) of the corresponding supergravity field ψ(X ′) produced by the other, tilted
world-sheet 2 (at θ), namely

δψ(X(τ1, z1)) =
1

2πα′

∫
2dτ2

dz2
z2x

Gψ(X,X ′)
δSNG
δψ

(τ2, z2) . (4.2)

Applying this generic equation to the specific dominant graviton contribution, one writes
the graviton coupling by expanding the Nambu-Goto action, namely

√
h

[
δhττ
2hττ

+
δhσσ
2hσσ

]
∼ z2

2max

2z22
δhττ ∼ (cos θ)2 δGtt , (4.3)

where hab is the induced metric on world-sheet 1, and we have retained only the dominant
part of the field after analytic continuation θ → −iχ. The field produced at the point
τ1 = 0 by the second (tilted) world-sheet is then given by

1
2πα′

∫
2dτ2

dz2
z2x

z2
2max

2z2
2

〈
δhθττδh

θ=0
ττ

〉
, (4.4)

where the correlation function〈
δhθττδh

θ=0
ττ

〉
=

1
z2
1z

2
2

[
2G(u)(cos θ)2 +H(u)

]
(4.5)

– 9 –



J
H
E
P
0
5
(
2
0
1
0
)
0
3
7

is given [57] in terms of the functions G(u) ∼ (3/32π2) · 1/u4 and H(u) ∼ (−1/48π2) · 1/u2

for large u, where u is the AdS invariant (3.5). Using u(τ1 = 0) ∼ (L2+τ2
2 )/(2z1z2) one gets

δGtt ∝ (cos θ)2
∫
dz2
z2x

z2
2max

z2
2

1
z2
1z

2
2

∫ ∞
−∞

dτ2
z4
1z

4
2

(L2 + τ2
2 )4

; (4.6)

one then performs the rescaling τ2 → τ2/L, z2 → z2/z2max, with z2max ∝ R2, and finds
the constraint

δGtt
Gtt

∝ z4
1R

3
2

L7
(cos θ)2 � 1 . (4.7)

This constraint is most restrictive when evaluated at z1 = z1max ∝ R1, which is as far as
the string world-sheet extends into the 5th dimension of AdS5, see figure 2. Performing
the analytic continuation θ → −iχ, and interchanging the rôles of the two world-sheets by
switching the subscripts 1 and 2 in the results above in order to get the maximal constraint,
one finally obtains

(
L2

R1R2

) 7
2

min

(√
R1

R2
,

√
R2

R1

)
� ς2 ⇒ L2 � L2

max ≡
R1R2ς

4
7[

min
(√

R1
R2
,
√

R2
R1

)] 2
7

, (4.8)

and in this region the phase δG is actually small, as it should be. It is interesting to
remark that the smaller the dipole size, the larger the impact-parameter region where the
weak field approximation is valid, as we may expect from physical intuition. Moreover,
considering the possibility of an energy-dependent dipole size inside a target, e.g. due to
high density effects,2 the size dependence may even strengthen the cross section bound (see
next section 4.2) through a weaker energy dependence of the impact-parameter limit Lmax.
Let us for instance assume an energy dependence R2

1 ∼ R2
2ς
−λ of the smaller dipole size:

in this case one would find a weaker constraint on L,(
L

R2

)2

� ς
4
7
− 3

7
λ . (4.9)

4.2 The elastic eikonal hypothesis

From expression (2.1) one can determine the impact-parameter partial amplitude a(χ,~b)
corresponding to the dipole-dipole elastic amplitude A, i.e. (suppressing the sizes of the
dipoles) a(χ,~b) = −iCM (χ,~b). In the large-L region, following section 3, the AdS/CFT
contribution reads

atail(χ,~b) = i

1− exp

i∑
ψ

δψ

 , (4.10)

with the phase shifts specified by (3.10). This expression can be trusted as long as the
solution for the minimal surface problem is disconnected, and above all, as remarked in the

2Such an effect could mimic the high partonic density effects in QCD deep-inelastic scattering for which

the dipole size R in a high density target would be of order R ∼ ς−
1
2λ with λ ∼ .3, see e.g. [58].
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preceding subsection, as long as the weak gravitational field constraint (4.8) is satisfied.
Note that since expression (4.10) verifies the relation

Im atail(χ,~b) =
1
2

∣∣∣atail(χ,~b)∣∣∣2 , (4.11)

it corresponds to a purely elastic amplitude, in agreement with the planar limit implied by
the AdS/CFT correspondence.

The result (4.8) calls for an important comment: it expresses a stringent constraint
on the impact-parameter range due to the weak gravitational field condition required in
applying the AdS/CFT correspondence. Let us now add to the discussion a possible
extension of the results, obtained adopting the S-matrix point-of-view, but not a priori
borne out by the dual AdS/CFT picture.

From the S-matrix point-of-view, the exponential form of (4.10) (see also (3.9)) is
typical of a resummation of non-interacting (i.e., independent) colorless exchanges (on the
gauge theory side) which can be taken into account in order to possibly enlarge the domain
of validity of (4.10). This amounts to assume the validity of the eikonal approximation for
a purely elastic scattering amplitude (see [59–61] for the eikonal approximation in QED;
for QCD see e.g. [62]). However, in the framework of the microscopic theory, i.e., the
4-dimensional gauge theory at strong coupling, there is no rigorous theoretical derivation
of the eikonal formula. In fact, as a result of our previous analysis, we do not expect this
independent resummation to be valid from the AdS/CFT correspondence point-of-view,
since a strong gravitational field in the bulk near the relevant minimal surfaces is expected
to be the seed of graviton self-interactions, which would spoil the independent emission of
the gravitational eikonal formalism.

Yet, for completion, let us suppose that the eikonal formalism for the elastic amplitude
may be extended in some larger phase-space region and thus examine, from the empirical S-
matrix point-of-view, whether and down to which value of the impact-parameter separation
the formula (4.10) could be used beyond the constraint (4.8). As a first step beyond our
AdS/CFT correspondence result, one could infer from an S-matrix model formulation that
the amplitude (4.10) is reliable as long as the dominant graviton-induced phase shift δG

is small. Following formulas (3.10), this means that L2

R1R2
�
(
κG

(coshχ)2

sinhχ

) 1
3 ∼ (κGς)

1
3 . In

fact the minimal impact-parameter value for the eikonal formula (4.10) to be physically
sensible from the 4-dimensional point-of-view is more precisely

L2 > L2
min ≡ R1R2

(κG
π

ς
) 1

3 (4.12)

requiring the phase shift δG ≤ π, see eq. (3.10). This extreme minimal bound ensures
that Im atail(χ,~b) be not oscillating with L: since it is just proportional, via the optical
theorem, to the L-dependent partial cross section, a non-oscillating behavior is expected.
Indeed, it is reasonable to expect that more and more inelastic channels would open up
when going from the peripheral to the central impact-parameter domain.

From the dual gravitational point-of-view, the problem seems severe. Studies of the
gravitational eikonal approximation already exist in the literature [12, 16–20, 24]; however,

– 11 –



J
H
E
P
0
5
(
2
0
1
0
)
0
3
7

the precise question which is relevant in our case is beyond which value in the large impact-
parameter range the eikonal expression (4.10) for a purely elastic amplitude is expected to
be valid. This is equivalent to ask up to what impact-parameter distance it is mainly the
exchange of independent gravitons in the bulk which builds the whole amplitude. Using
our minimal surface approach, we see that the limitation to a weak field approximation for
the gravitational field at the tip of the minimal surfaces gives a stronger constraint than
the one (4.12) coming from the S-matrix model point-of-view.

4.3 Characteristic impact-parameter scales

Let us consider a range of validity of (4.10) varying from its AdS/CFT value defined by (4.8)
to its maximal S-matrix model extension (4.12). We are lead to define a characteristic
distance Ltail such that for L = |~b| > Ltail(s) the impact-parameter scattering amplitude
is given by eq. (4.10). One can then divide the whole impact-parameter space into a tail
region (L > Ltail), and a core region (L < Ltail) where inelastic channels are supposed to
open up. More specifically, the following regions are identified.

1. At large distances L > Lmax, whose exact expression is given by (4.8), the gravi-
tational field in the bulk is weak enough, and the contribution of the disconnected
minimal surface gives a rigorous holographic determination of the impact-parameter
tail of the scattering amplitude.

2. At moderately large distances Lmin < L < Lmax, where Lmin has been defined
in (4.12), the strong gravitational field is expected to generate a non zero Im δG lead-
ing to inelastic contributions on the gauge theory side, and hence to Im atail(χ,~b) >
1
2 |atail(χ,~b)|2 contrary to (4.11). The minimal surface is still disconnected but the
gravitational field begins to become strong in some relevant region in the bulk. Nev-
ertheless, for the sake of completeness, we will investigate what happens assuming
the validity of the elastic eikonal expression up to Ltail, lying somewhere in the range
Lmin ≤ Ltail ≤ Lmax.

3. For Lconnect < L < Lmin the elastic eikonal expression (4.10) is no more reliable,
even from the S-matrix point-of-view. An eikonal formula may still be valid with
an imaginary contribution to the phase shifts but it cannot be obtained through the
weak gravity regime of the AdS/CFT correspondence, even if the minimal surface is
still made of disconnected surfaces joined by interacting fields.

4. Finally, for even smaller distances L ≤ Lconnect the Gross-Ooguri transition takes
place, and the minimal surface solution becomes connected. In this region, the
AdS/CFT description goes beyond the interaction mediated by supergravity fields.

Region 1 and possibly part of region 2 constitute the impact-parameter tail region,
while the regions 3 and 4 constitute the central impact-parameter core region. To incorpo-
rate these regions in our analysis we need to use information coming from a source other
than the AdS/CFT correspondence: in practice, we will use the unitarity constraint

Im a(χ,~b) ≤ 2 . (4.13)
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Since we know precisely a(χ,~b) only in the tail region, we are able to determine only part
of the full scattering amplitude, i.e., the large impact-parameter contribution Atail,

A ≡ Acore +Atail ; Atail(s, t; ~R1, ~R2) = 2is
∫
L≥Ltail

d2~b ei~q·
~b
[
1− e(i

P
ψ δψ)

]
, (4.14)

where Acore will be constrained by the unitarity bound (4.13). Exploiting this expression
and (4.13), we will be able to set a lower and an upper bound on the large-s behavior of
the full amplitude depending on the s-dependence of Ltail.

An important addendum to this discussion is related to its modification due to energy-
dependent dipole sizes, as in (4.9). Indeed, sticking to the rigorous result coming from the
AdS/CFT correspondence in the case of a dipole of given size R scattering on a dipole
of energy-dependent size R(ς) ∼ Rς−

λ
2 , one finds Ltail ∼ Rς

2
7
−λ 3

14 . This has the expected
effect of enlarging the domain of elasticity and, as we shall see now, to strengthen the
high-energy bound on the total cross section.

4.4 A convergence problem for ReAtail
As a preliminary, we have to discuss the convergence properties of Atail in (4.14). Perform-
ing the angular integration, one has (with q ≡ |~q |)

Atail(s, t; ~R1, ~R2) = −4πis
∫ ∞
Ltail

dLLJ0(qL) CM (χ,L;R1, R2) . (4.15)

Following expression (3.10), at large L the integrand is dominated by the tachyonic KK
scalar exchange3 and behaves as

L

√
2
πqL

cos
(
qL− π

4

)[
i

(
κS
R1R2

L2

1
sinhχ

)
− 1

2

(
κS
R1R2

L2

1
sinhχ

)2
]
, (4.16)

and since the imaginary part is bounded by L−3/2, while the real part is bounded by L−7/2,
the integral is convergent as long as q 6= 0.

However, if one sets q = 0 directly in the integrand, since J0(0) = 1 one finds a
logarithmic divergence in the real part of the amplitude, coming from this KK scalar
contribution. One can easily isolate the divergent part by writing

Atail(s, t; ~R1, ~R2) =− 4πis
∫ ∞
Ltail

dLLJ0(qL)×

×
[
R1R2

L2

iκS
sinhχ

+
(
CM (χ,L;R1, R2)− R1R2

L2

iκS
sinhχ

)]
.

(4.17)

3We have checked that the potentially divergent contribution coming from the subleading (in energy)

graviton terms (see eqs. (50-56) in ref. [8]) actually cancel.
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The term in brackets is convergent at q = 0; to treat the other term one divides the integral
as follows:

Adivtail(s, t; ~R1, ~R2) ≡− 4πis
∫ ∞
Ltail

dLLJ0(qL)
R1R2

L2

iκS
sinhχ

= 4πκS
s

sinhχ
R1R2

[∫ ∞
1

dλ

λ
J0(λ) +

∫ 1

qLtail

dλ

λ
(J0(λ)− 1) +

+
∫ 1

qLtail

dλ

λ

]
.

(4.18)

It is now easy to see that the only divergent term when q → 0 is the last one, and so
we conclude

Adivtail(s, t→ 0; ~R1, ~R2) = 4πκS
s

sinhχ
R1R2 log

1
qLtail

+ finite terms ; (4.19)

recalling the relation (2.4) between χ and s one then obtains in the high-energy limit

Adivtail(s, t→ 0; ~R1, ~R2) = 8πκSm1m2R1R2 log
1

qLtail
+ finite terms . (4.20)

In fact, one should distinguish the mathematical problem of determining the real part of
the amplitude from a deeper physical one concerning the AdS/CFT correspondence itself.
Indeed, since the imaginary part of the amplitude is always finite in the t → 0 limit, and
moreover, as we will see in a moment, also analytic in s, it is known how to obtain the real
part by means of a dispersion relation, which yields a finite result. However, on the gravity
side, it is as yet unclear what is the origin of this divergence, that we expect to be cancelled
by effects which do not show up at the given level of supergravity approximation of the
AdS/CFT correspondence. Moreover, for our purpose, the dependence on the energy is
weak, coming through the dependence of Ltail on s. In the following we will then discard
this divergence, focusing on the dominant contribution at large s; conceptually, it may be
a relevant issue, but we delay this study for the future.

5 The N = 4 SYM forward amplitude

5.1 Total cross section

We start from the imaginary part of the amplitude at t = 0, which is related to the dipole-
dipole elastic total cross section by means of the optical theorem. The contribution σtail
to the total cross section of the large impact-parameter region as obtained from AdS/CFT
is given by

σtail '
s→∞

ImAtail(s, 0; ~R1, ~R2)
s

= −4π
∫ ∞
Ltail

dLL Re CM (χ,L;R1, R2)

= 4π
∫ ∞
Ltail

dLL

1− cos

∑
ψ

δψ

 . (5.1)
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The χ-dependence at large energy induces a hierarchy between the different contributions.
This hierarchy is clearly revealed after performing the change of variables

L→ λ ≡ (sinhχ)−
1
6

L√
R1R2

; Ltail → λtail = (sinhχ)−
1
6
Ltail√
R1R2

, (5.2)

which yields (rescaling with sinhχ instead of coshχ allows to keep manifest the symmetry
under crossing, i.e., under χ→ iπ − χ, of the various phase shifts in formulas (3.10))

σtail =4π(sinhχ)
1
3R1R2

∫ ∞
λtail

dλλ

[
1− cos

(
κS
λ2

1

(sinhχ)
4
3

+
κD
λ6

1
(sinhχ)2

+

+
κB
λ4

cothχ

(sinhχ)
2
3

+
κG
λ6

(cothχ)2
)]

.

(5.3)

The integral is clearly finite:

- the quantity in braces is always bounded between 0 and 2, which indeed corresponds
to the unitarity constraint on the impact-parameter amplitude,

- in the large λ limit the integrand behaves as λ−3 (corresponding to the KK scalar
contribution to ImAtail(s, 0)).

The overall convergence is then ensured, contrary to the case of the real part. Note
that the leading term (the last one in (5.3)) is crossing-symmetric, thus corresponding to
“Pomeron exchange” in the S-matrix language, while the first subleading term, coming from
antisymmetric-tensor exchange (the before-last one in (5.3)), is crossing-antisymmetric un-
der χ→ iπ−χ, thus corresponding to “Odderon exchange”. At large energy the dominant
contribution is the one from graviton exchange. Indeed, recalling the relation (2.4) between
χ and s we obtain for s→∞

σtail '
s→∞

4πR1R2ς
1
3

∫ ∞
λtail

dλλ
[
1− cos

(κG
λ6

)]
=

2π
3
R1R2 ς

1
3

∫ µtail

0
dµµ−

4
3 [1− cos (κGµ)]

=
2π
3
R1R2

(
ς

µtail

) 1
3
∫ 1

0
dxx−

4
3 [1− cos (κGµtailx)] ,

(5.4)

where we have set
µ ≡ λ−6 ; µtail = λ−6

tail ; x =
µ

µtail
.

To complete the calculation of the high-energy behavior of σtail we need to know the limit
of validity of the application of AdS/CFT and thus how Ltail depends on s. Let us consider
the parameterization

Ltail = λ0

√
R1R2 ς

β ⇒ λtail = λ0 ς
β− 1

6 ; µtail = λ−6
0 ς1−6β , (5.5)

where λ0 may have some residual dependence on R1,2 (see e.g. (4.8)). If β < 1
6 then

λtail → 0 and µtail →∞ as the energy increases, and so σtail ∼ ς 1
3 ; if β > 1

6 then µtail → 0
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and λtail → ∞, and so σtail ∼ ς
1
3 ς

5
3
(1−6β) = ς2−10β. Finally, for β = 1

6 a constant λtail is
found, and the integral cannot modify the s-dependence. Summarizing, we have for large s

σtail ' 2π
3
λ2

0R1R2ς
2β

∫ 1

0
dxx−

4
3

[
1− cos

(
κGλ

−6
0 ς1−6βx

)]

∼
s→∞

2π
3
R1R2



ς
1
3

3πκ
1
3
G

Γ(1/3)
β <

1
6
,

ς
1
3λ2

0

∫ 1

0
dxx−

4
3
[
1− cos

(
κGλ

−6
0 x

)]
β =

1
6
,

ς2−10β 1
2
κ2
Gλ
−10
0 β >

1
6
.

(5.6)

We are now in the position to determine a lower and an upper bound on the high-energy
behavior of the dipole-dipole total cross section. Since obviously σtot > σtail, eq. (5.6)
provides a lower bound. The overall unitarity constraint eq. (4.13) allows one to put an
upper bound on the contribution from the core region L < Ltail, i.e., σcore ≤ 4πL2

tail =
4πλ2

0R1R2ς
2β, and thus on the whole total cross section,

σtot = σcore+ σtail < 4πλ2
0R1R2ς

2β

{
1 +

1
6

∫ 1

0
dxx−

4
3

[
1− cos

(
κGλ

−6
0 ς1−6βx

)]}
. (5.7)

We have included here only the leading part of the tail contribution at high energy. A
more rigorous way to write the β-dependent bounds on the high-energy behavior of σtot is
the following,

min
(

1
3
, 2− 10β

)
≤ lim

ς→∞

log σtot

log ς
≤ max

(
1
3
, 2β
)
, (5.8)

which in particular, using the value β = 2
7 coming from the weak field constraint (4.8),

yields the rigorous bound

− 6
7
≤ lim

ς→∞

log σtot

log ς
≤ 4

7
. (5.9)

The following remarks are in order.

1. For β < 1
6 , at sufficiently high energy one would have Ltail < Lmin, thus entering the

unphysical region where the impact-parameter partial amplitude is infinitely oscillat-
ing between 0 and 1. In this case the total cross section would become purely elastic
at high energy, while one expects the opening of more and more inelastic channels as
the energy increases: this means that one lies beyond the applicability of the elastic
eikonal approximation.

2. At β = 1
6 , corresponding to Ltail/Lmin = const., the tail and core contributions have

the same high-energy behavior. In this case λtail (or, equivalently, µtail) does not
depend on energy. However, one has to verify the non-oscillating behavior condition

λtail ≥
(κG
π

) 1
6
, µtail ≤ π

κG
. (5.10)
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3. For 1
6 < β ≤ 2

7 , which corresponds to Lmin < Ltail < Lmax (strictly speaking, at
sufficiently high energy), the core region dominates, while the tail region gives a
subleading contribution as s→∞. The two bounds determine a window of possible
power-law behaviors.

4. For the maximal value β = 2
7 , i.e., for Ltail/Lmax = const., the total cross section

behavior is constrained to be such that σtot ≤ const. × ς 4
7 . This maximal value is

determined from the requirement that the AdS/CFT correspondence can be reliably
applied, i.e., that the constraint (4.12) for the gravitational perturbation to be weak
is verified. In fact, this is the rigorous result obtained by means of the AdS/CFT
correspondence, since for smaller β one expects inelastic contributions coming from
a strong dual gravitational field.

5. One could also consider β > 2
7 , but in that case one would only obtain a weaker bound

on the total cross section. Indeed, in doing so one would overestimate the contribution
of the core, including in it the impact-parameter region Lmax < L < Ltail, where the
amplitude is reliably described by the eikonal AdS/CFT expression.

In the rest of this paper we will thus consider the β-dependence in the domain 1
6 ≤ β ≤ 2

7 .
The limiting values have the following characteristics: β = 1

6 is the minimal admissible
value for which the eikonal approximation using real phase shifts could be valid, and 2

7 is
the absolute bound coming from the AdS/CFT correspondence. Note that from eq. (5.6)
we see that ImAtail(s, 0) = ς1+γ × (s-independent) is analytic in s, with a branch point at
s = 0.

5.2 Asymptotic forward phase

A general result regarding scattering amplitudes at high-energy relates the phase ϕ of the
amplitude to the leading behavior in s (see e.g. [63, 64] and references therein): for a
symmetric amplitude behaving as ∼ sα at high energy one has A(+) ∼ ±sαeiπ(1−α

2
), while

for an antisymmetric amplitude with the same leading s-dependence one finds A(−) ∼
±sαeiπ( 1

2
−α

2
). Note that for the dominant contribution the sign ambiguity is fixed by

asking for a positive total cross section. This result is a consequence of analyticity, and
it is obtained through the application of the Phragmén-Lindelöf theorem to the func-
tion A(±)/(s − u)α (u is here the usual Mandelstam variable). Hence we have at asymp-
totic energy

ImA(+)

ReA(+)
= − tan

πα

2
;

ImA(−)

ReA(−)
= cot

πα

2
. (5.11)

Although this result holds in general for any value of t along the “Regge trajectory” α(t), we
consider here the forward amplitude. Using (5.11) for a positive signature amplitude A(+)

with α = 1 + γ, and taking γ = γ(β) to be the upper bound on the exponent determined
above in section 5.1, we find that at large s

A(+) = Cς1+γei
π
2
(1−γ), γ(β) = max

(
1
3
, 2β
)
, (5.12)
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Figure 3. Upper and lower bounds on the high-energy behavior of total cross sections. The bounds
on the total cross section exponent γ, i.e., on the Pomeron intercept minus one, are displayed as
a function of the power law exponent β of Ltail ∝ ςβ . Solid line: upper bound, coming from the
core contribution for 1

6 ≤ β ≤ 2
7 . Long-dashed line: lower bound, coming from the tail contribution

for β > 1
6 . Short-dashed line: weaker upper bound for β > 2

7 , obtained by overestimating the core
contribution (see text). We singularize the value β = 1

5 below which the tail contribution and thus
the total cross section are bounded to grow.

where the phase ϕ = π
2 (1 − γ) varies in the range between ϕ = 3π

14 , for the maximally
core-dominated β = 2

7 amplitude, and ϕ = π
3 for the tail -dominated result at β ≤ 1

6 . Here
C is a positive constant, and we fix the sign ambiguity of the amplitude by requiring the
positivity of the total cross section.

The interesting outcome of these analyticity properties is that we gain a new constraint
on the overall amplitude, which can help complementing the knowledge of the tail region
from AdS/CFT. As an example, one may consider a “black disk model” [65], where one
assumes the eikonal approximation in the whole tail (i.e., β = 1

6), and a maximally inelastic
(“black disk”) amplitude in the core (i.e., a(χ,~b) ∼ i). One then obtains the frontier
between tail and core being fixed at κGµytail ∼ π

2 with a forward amplitude consistent
with analyticity and unitarity and satisfying the constraint relation (5.10).

5.3 Subleading contributions

The expression eq. (5.3) shows clearly the hierarchy in energy of the contributions of the
various supergravity fields. Indeed, at large s, keeping only the leading contribution from
each field, we have for the subleading part of the total cross section

σsubleadingtail ' 4πς
1
3R1R2

∫ ∞
λtail

dλλ sin
(κG
λ6

)(κS
λ2

1

ς
4
3

+
κD
λ6

1
ς2

+
κB
λ4

1

ς
2
3

)
. (5.13)
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The well-known “absorption” phenomenon appears in (5.13), since the secondary contri-
butions are shielded by the sin

(
κG
λ6

)
coming from the leading graviton contribution. Its

natural interpretation in a S-matrix framework comes from the initial and final state elastic
interactions which correct the “bare” secondary contributions.

For β > 1
6 , in which case λ−1

tail → 0 in (5.13), we have for the tail contributions

graviton −→ 2− 10β

antisymmetric tensor −→ 1− 8β

KK scalar −→ − 6β

dilaton −→ − 10β .

(5.14)

The secondary contributions in the core are neither determined nor usefully constrained
by unitarity. Note that, in the limiting case β = 1

6 , with λtail ∼ const., the leading
s-dependence of the various tail contributions to the total cross section obey the follow-
ing hierarchy:

graviton (tail and core) −→ 1
3

antisymmetric tensor −→ −1
3

KK scalar −→ −1

dilaton −→ −5
3 .

(5.15)

Starting from the graviton, the intercept of the other contributions is obtained subtracting
2/3 each time. Note that, when expanding the eikonal expression, one must be aware
that subleading contributions from a field with a larger intercept mix with the leading
contributions of the less relevant fields.

In the “black disk model” [65], one assumes total absorption in the core region, an
thus formula (5.13) would give the whole contribution to the total cross section from
subleading contributions. Hence, in that case one would determine the effective hierarchy
of intercepts to be given by (5.15) with β = 1

6 . In particular, the “Odderon” contribution,
via Gauge/Gravity duality, is found to have intercept 2

3 , which is less than the perturbative
1 corresponding to the exchange of 3 gluons.

6 Summary, discussion and outlook

Using the AdS/CFT correspondence to determine the dipole-dipole elastic amplitudes at
large impact-parameter, and the constraints from analyticity and unitarity at lower impact-
parameter, we study the high-energy behavior of soft amplitudes in N = 4 SYM gauge
field theory. Our results can be summarized as follows.

1. In the region where the AdS/CFT correspondence is fully valid, i.e., at L > Lmax

where the supergravity field is weak enough, we found an absolute bound σtot <

const. × ς
4
7 for the high-energy behavior of the total cross section. In the usual

language of strong interactions it corresponds to the bound 11
7 for the “Pomeron

intercept”. This bound is governed by the graviton exchange in the dual AdS bulk.
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2. Below Lmax, there are relevant regions in the bulk where the induced gravitational
field becomes strong w.r.t. the background AdS metric. Hence, one would expect
self-interacting graviton exchanges, which could spoil the elastic eikonal expression.

3. The upper bound is strengthened to give σtot < const. × ς2β, if one adopts the
hypothesis of validity of the eikonal approximation in the impact-parameter region
L > Ltail ∝ ςβ, with 1

6 < β < 2
7 , thus using independent graviton exchange even

when strong gravitational perturbations appear in the bulk.

4. The eikonal approximation with independent graviton exchange cannot be valid below
an impact-parameter Lmin ∼ ς

1
6 , from the physically motivated requirement of non-

oscillating cross sections. For this value, the core and the tail contributions to the
impact-parameter amplitude have the same power in energy, transforming the bounds
into a prediction σtot ∼ ς 1

3 , i.e., a “Pomeron intercept” equal to 4
3 .

5. The real part of the forward amplitude coming from the AdS/CFT determination
contains a divergence which can be got rid of using dispersion relations. However, it
points towards a necessary completion of the AdS/CFT correspondence beyond the
exchange of the tachyonic KK scalar mode.

In order to obtain these results, we made use of the minimal surface formulation of the
AdS/CFT correspondence of ref. [8]. The elastic amplitudes at large impact-parameter are
combined with analyticity and unitarity constraints to evaluate the behavior of the total
cross sections. It is useful to compare our results obtained using this method with the
other existing approaches.

The absolute bound we obtain is a new result, which is linked to the precise derivation
of a weak gravitational field limitation of the AdS/CFT correspondence in the supergravity
formulation. We note that the upper bound σtot < const. × ς 4

7 necessarily restricts the
total cross section to be below the bare graviton exchange contribution, namely σtot ∼ ς1.

Our result appears as the analogue of the Froissart bound, but in the context of the
non confining N = 4 SYM theory, since it is the combination of the unitarity bound on
impact-parameter amplitudes with the determination of a precise power-like bound on the
impact-parameter radius from AdS/CFT (for confining theories, this bound is logarithmic
leading to the Froissart bound σtot ∼ log2 ς).

We remark that a more stringent bound would be obtained if one assumed the validity
of the elastic eikonal approximation in a region with strong gravitational field in the bulk.
This is why we considered the possibility of an enlarged impact-parameter region of validity
of the eikonal approximation, defined by a power-like behavior L > Ltail ∝ ςβ, with
1
6 < β < 2

7 . This results into a β-dependent bound. However, in the region of strong
gravitational fields, as we have discussed in section 5, other contributions are expected to
modify the gravitational sector.

Contributions to the graviton Reggeization [11–14] have not been considered in the
present calculations. These are corrections which are beyond the supergravity approxima-
tion. Indeed, for the bare Pomeron propagator, these can be justified from a valid flat space
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approximation [11, 66]. However, we do not know yet how to couple in a consistent way
this improved propagator to the disconnected minimal surfaces at large impact-parameter.
This is an interesting subject to be studied further on.

The remarkable value 4
3 of the Pomeron intercept common for the tail and the core

contributions in the special case Ltail ∼ ς 1
6 has been already previously noticed using min-

imal surfaces [67]. This result has been obtained recently without using minimal surfaces
in [24], where the authors also notice that the reggeized correction should appear at much
higher energies than the initial intercept 4

3 . It would be informative to understand the rela-
tion between minimal surfaces and their derivation. Note that in a subsequent paper [25],
a new source of inelasticity is discussed beyond the AdS/CFT correspondence. Indeed,
the study of a convenient description of the central impact-parameter region with a strong
inelastic component is an important open topic.

There exist related AdS/CFT calculations of a Wilson loop immersed into a gauge
field background, whose dual description is a modified AdS metric, and which aims at
describing DIS on a large nucleus [21, 22]. Indeed, these studies look for a determination
of the Pomeron intercept which could be compared to our bounds. For instance, in [21]
two solutions have been found with intercept 2 and 3

2 , the first one violating the black disk
limit [22]. The second one is in agreement with our absolute bound. As an outlook, it
would be interesting to know the impact-parameter dependence of this solution.

Finally, it would be interesting to extend this study to the overall elastic amplitude, by
using more constraints, e.g. the analyticity requirements at non zero momentum transfer.
Also, the physically interesting case of confining theories could be studied in more details
using as an input the results of the minimal surface studies of refs. [9, 10].
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