A numerical algorithm is presented for explicitly computing the gauge
connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds.
To illustrate this algorithm, we calculate the connections on stable monad
bundles defined on the K3 twofold and Quintic threefold. An error measure is
introduced to determine how closely our algorithmic connection approximates a
solution to the Hermitian Yang-Mills equations. We then extend our results by
investigating the behavior of non slope-stable bundles. In a variety of
examples, it is shown that the failure of these bundles to satisfy the
Hermitian Yang-Mills equations, including field-strength singularities, can be
accurately reproduced numerically. These results make it possible to
numerically determine whether or not a vector bundle is slope-stable, thus
providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in
version 2